Decolorization of Reactive Orange 122 as an Organic Pollutant by the Sonoelectrochemical Process and Toxicity Evaluation

Document Type : Original Article


1 Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran

2 Young Researchers Club, Yazd Branch, Islamic Azad University, Yazd, Iran

3 Department of Chemistry, Faculty of Sciences, Vali-e-Asr University, Rafsanjan, Iran


Introduction: Combined of electrochemistry and ultrasound (sonoelectrochemistry) is one of the advanced oxidation processes (AOPs) for decolorization of color wastewaters. The physicochemical effects of ultrasound improve the electrooxidation of dye solution and decolorization rate.
Materials and Methods: In this study, the decolorization of Reactive Orange 122 (RO122) as an organic pollutant by sonoelectrochemistry has been examined. In this context, the effect of several factors such as hydrogen peroxide concentration, the pH of solution, colour concentration, and the input voltage on decolorization of colourful solution as a single factor were studied. Based on the results, the optimum hydrogen peroxide concentration for removing the colour with the concentration of 10 mgL-1 at 90 minutes was 3.0 mgL-1, with pH about 7.0 and the input potential 1.05 V, the process was carried out without the use of hydrogen peroxide as a discussion parameter at 90 minutes.
Results: The results revealed that decolourization and removal of chemical oxygen demand (COD) of both methods were 99% and 70% in the presence of hydrogen peroxide and 97% and 95.5% in the absence of hydrogen peroxide, respectively.
Conclusions: Microbial toxicity test assessed the toxicity of intermediates produced during these two procedures, the results indicated, in the absence of hydrogen peroxide, Pseudomonas aeruginosa bacteria showed better performance on the colour of sonoelectrochemical treatment solutions compared to the initial colour of the solution, due to absence of toxic materials from the redistribution of RO122 colour.


  1. Wang X, Yao Z, Wang J, Guo W, Li G. Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation. Ultrason Sonochem. 2008;15(1):43-48. doi:10.1016/j.ultsonch.2007.01.008.
  2. Yavuz Y, Shahbazi R, Koparal AS, Ogutveren UB. Treatment of Basic Red 29 dye solution using iron-aluminum electrode pairs by electrocoagulation and electro-Fenton methods. Environ Sci Pollut Res Int. 2014;21(14):8603-8609. doi:10.1007/s11356-014-2789- 8.
  3. He Z, Song S, Zhou H, Ying H, Chen J. C.I. Reactive Black 5 decolorization by combined sonolysis and ozonation. Ultrason Sonochem. 2007;14(3):298-304. doi:10.1016/j.ultsonch.2006.09.002.
  4. Voncina DB, Le Marechal AM. Reactive dye decolorization using combined ultrasound/H2O2. Dyes Pigm. 2003;59(2):173-179. doi:10.1016/S0143-7208(03)00101-3.
  5. Zhao G, Shen S, Li M, Wu M, Cao T, Li D. The mechanism and kinetics of ultrasound-enhanced electrochemical oxidation of phenol on boron-doped diamond and Pt electrodes. Chemosphere. 2008;73(9):1407-1413. doi:10.1016/j.chemosphere.2008.08.008.
  6. Sires I, Brillas E, Oturan MA, Rodrigo MA, Panizza M. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res Int. 2014;21(14):8336- 8367. doi:10.1007/s11356-014-2783-1.
  7. Yang B, Zuo J, Tang X, et al. Effective ultrasound electrochemical degradation of methylene blue wastewater using a nanocoated electrode. Ultrason Sonochem. 2014;21(4):1310-1317. doi:10.1016/j.ultsonch.2014.01.008.
  8. Somayajula A, Asaithambi P, Susree M, Matheswaran M. Sonoelectrochemical oxidation for decolorization of Reactive Red 195. Ultrason Sonochem. 2012;19(4):803-811. doi:10.1016/j. ultsonch.2011.12.019.
  9. Sharma SK, Sanghi R. Advances in Water Treatment and Pollution Prevention. Netherlands: Springer; 2012:460.
  10. Esclapez MD, Tudela I, Diez-Garcia MI, Saez V, Bonete P. Towards the complete dechlorination of chloroacetic acids in water by sonoelectrochemical methods: Effect of the cathode material on the degradation of trichloroacetic acid and its degradation by-products. Appl Catal B Environ. 2015;166-167:66-74. doi:10.1016/j.apcatb.2014.10.061.
  11. Radi MA, Nasirizadeh N, Rohani-Moghadam M, Dehghani M. The comparison of sonochemistry, electrochemistry and sonoelectrochemistry techniques on decolorization of C.I Reactive Blue 49. Ultrason Sonochem. 2015;27:609-615. doi:10.1016/j.ultsonch.2015.04.021.
  12. Brillas E. Martinez-Huitle CA. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ. 2015;166-167:603-643. doi:10.1016/j.apcatb.2014.11.016.
  13. Comninellis C. Electrocatalysis in the electrochemical conversion/ combustion of organic pollutants for waste water treatment. Electrochim Acta. 1994;39(11-12):1857-1862. doi:10.1016/0013- 4686(94)85175-1.
  14. Sanroman MA, Pazos M, Cameselle C. Optimisation of electrochemical decolourisation process of an azo dye, Methyl Orange. J Chem Technol Biotechnol. 2004;79(12):1349-1353. doi:10.1002/jctb.1098.
  15. Xu LJ, Chu W, Graham N. Sonophotolytic degradation of dimethyl phthalate without catalyst: analysis of the synergistic effect and modeling. Water Res. 2013;47(6):1996-2004. doi:10.1016/j. watres.2013.01.015.
  16. Li M, Li JT, Sun HW. Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation. Ultrason Sonochem. 2008;15(5):717-723. doi:10.1016/j.ultsonch.2007.10.001.
  17. Lorimer JP, Mason TJ, Plattes M, Phull SS. Dye effluent decolourisation using ultrasonically assisted electro-oxidation. Ultrason Sonochem. 2000;7(4):237-242. doi:10.1016/S1350-4177(99)00045-0.
  18. Yasman Y, Bulatov V, Gridin VV, et al. A new sono-electrochemical method for enhanced detoxification of hydrophilic chloroorganic pollutants in water. Ultrason Sonochem. 2004;11(6):365-372. doi:10.1016/j.ultsonch.2003.10.004.
  19. Rivera M, Pazos M, Sanroman MA. Improvement of dye electrochemical treatment by combination with ultrasound technique. J Chem Technol Biotechnol. 2009;84(8):1118-1124. doi:10.1002/jctb.2141.
  20. Mason TJ, Lorimer JP. General Principles, in Applied Sonochemistry. Applied sonochemistry: uses of power ultrasound in chemistry and processing. Wiley-VCH Verlag GmbH & Co. KGaA; 2003:25-74. doi:10.1002/352760054X.
  21. Zhang XB, Dong WY, Yang W. Decolorization efficiency and kinetics of typical reactive azo dye RR2 in the homogeneous Fe(II) catalyzed ozonation process. Chem Eng J. 2013;233:14-23. doi:10.1016/j.cej.2013.07.098.
  22. Jadhav JP, Kalyani DC, Telke AA, Phugare SS, Govindwar SP. Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent. Bioresour Technol. 2010;101(1):165-173. doi:10.1016/j.biortech.2009.08.027.
  23. Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresour Technol. 2009;100(9):2493-2500. doi:10.1016/j.biortech.2008.12.013.
  24. Song L, Shao Y, Ning S, Tan L. Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes. Bioresour Technol. 2017;233:21-29. doi:10.1016/j.biortech.2017.02.065.
  25. Sen SK, Raut S, Bandyopadhyay P, Raut S. Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev. 2016;30(3):112-133. doi:10.1016/j.fbr.2016.06.003.
  26. Tan L, He M, Song L, Fu X, Shi S. Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1. Bioresour Technol. 2016;203:287-294. doi:10.1016/j.biortech.2015.12.058.
  27. Solis M, Solis A, Perez HI, Manjarrez N, Flores M. Microbial decolouration of azo dyes: a review. Process Biochem. 2012;47(12):1723-1748. doi:10.1016/j.procbio.2012.08.014.
  28. Saratale RG, Saratale GD, Chang JS, Govindwar SP. Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng. 2011;42(1):138-157. doi:10.1016/j.jtice.2010.06.006.
  29. Song YL, Li JT. Degradation of C.I. Direct Black 168 from aqueous solution by fly ash/H2O2 combining ultrasound. Ultrason Sonochem. 2009;16(4):440-444. doi:10.1016/j.ultsonch.2008.12.011.
  30. Ai Z, Li J, Zhang L, Lee S. Rapid decolorization of azo dyes in aqueous solution by an ultrasound-assisted electrocatalytic oxidation process. Ultrason Sonochem. 2010;17(2):370-375. doi:10.1016/j.ultsonch.2009.10.002.
  31. Abbasi M, Razzaghi-Asl N. Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2. J Hazard Mater. 2008;153(3):942-947. doi:10.1016/j.jhazmat.2007.09.045.
  32. Lorimer JP, Mason TJ, Plattes M, Phull SS, Walton DJ. Degradation of dye effluent. Pure Appl Chem. 2001;73(12):1957-1968. doi:10.1351/pac200173121957.
  33. Adewuyi YG. Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res. 2001;40(22):4681- 4715. doi:10.1021/ie010096l.
  34. Feldman D. Sonochemistry, theory, applications and uses of ultrasound in chemistry, by Timothy J. Mason and J. Phillip Lorimer, Wiley-Interscience, New York, 1989, 252 pp. Price: $87.95. J Polym Sci C Polym Lett. 1989;27(13):537-537. doi:10.1002/pol.1989.140271309.
  35. Mason TJ, Lorimer JP. Sonoelectrochemistry. In: Applied Sonochemistry. Wiley-VCH Verlag GmbH & Co. KGaA; 2003:225- 266. doi:10.1002/352760054X.ch6.
  36. Vajnhandl S, Le Marechal AM. Ultrasound in textile dyeing and the decolouration/mineralization of textile dyes. Dyes Pigm. 2005;65(2):89-101. doi:10.1016/j.dyepig.2004.06.012.
  37. Chowdhury P, Viraraghavan T. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes - a review. Sci Total Environ. 2009;407(8):2474- 2492. doi:10.1016/j.scitotenv.2008.12.031.
  38. Siddique M, Farooq R, Khan ZM, Khan Z, Shaukat SF. Enhanced decomposition of reactive blue 19 dye in ultrasound assisted electrochemical reactor. Ultrason Sonochem. 2011;18(1):190-196. doi:10.1016/j.ultsonch.2010.05.004.
  39. Bonete Ferrandez PL, Esclapez MD, Bernal VS, Gonzalez‐Garcia J. Sonoelectrochemistry in Environmental Applications. In: Pollet BG, ed. Power Ultrasound in Electrochemistry. John Wiley & Sons, Ltd; 2012:101-139. doi:10.1002/9781119967392.ch4.
  40. BasiriParsa J, Rezaei M, Soleymani AR. Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics. J Hazard Mater. 2009;168(2-3):997- 1003. doi:10.1016/j.jhazmat.2009.02.134.
  41. Okitsu K, Iwasaki K, Yobiko Y, Bandow H, Nishimura R, Maeda Y. Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrason Sonochem. 2005;12(4):255-262. doi:10.1016/j.ultsonch.2004.01.038.
  42. Salari D, Niaei A, Khataee A, Zarei M. Electrochemical treatment of dye solution containing C.I. Basic Yellow 2 by the peroxi-coagulation method and modeling of experimental results by artificial neural networks. J Electroanal Chem. 2009;629(1-2):117- 125. doi:10.1016/j.jelechem.2009.02.002.