A Review on Some Natural Biopolymers and Their Applications in Angiogenesis and Tissue Engineering

Document Type : Review Article

Authors

1 Department of Tissue Engineering, Faculty of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran

2 Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

3 Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

4 Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

5 Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

One of the concerning challenges for engineering and regenerating tissues is providing a suitable condition for development of a utilitarian vascular matrix. Natural polymers such as collagen, gelatin, chitosan, silk fibroin and fibrin are used as bio-compatible scaffolds to prepare appropriate biological and mechanical conditions for regenerative medicine and tissue engineering approaches. A wide range of studies demonstrated that using these biomaterials as scaffolds or engineered constructions such as hydrogels can provide a microenvironment to improve regeneration and repair of target tissues and organs through enhancing angiogenesis. They can be used single or in composition with each other. This review focused on some different natural polymeric constructs that have been incorporated in tissue engineering.

Keywords


  1. Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M. Bioactive Glasses: Sprouting Angiogenesis in Tissue Engineering. Trends Biotechnol. 2018;36(4):430-444. doi:10.1016/j. tibtech.2017.12.003.
  2. Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59(4-5):207- 233. doi:10.1016/j.addr.2007.03.012.
  3. Murphy WL, Dennis RG, Mooney DJ. Tissue engineering scaffolds. Google Patents; 2009.
  4. Czernuszka J, Sachlos E, Derby B, Reis N, Ainsley C. Tissue engineering scaffolds. Google Patents; 2004.
  5. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater. 2003;5:29-39; discussion 39-40.
  6. Rogina A. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci. 2014;296:221-230. doi:10.1016/j.apsusc.2014.01.098.
  7. Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27(7):1143-1169. doi:10.1002/adma.201403354.
  8. Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods. 2016;13(5):405-414. doi:10.1038/ nmeth.3839.
  9. Laschke MW, Harder Y, Amon M, et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 2006;12(8):2093-2104. doi:10.1089/ten.2006.12.2093.
  10. Soker S, Machado M, Atala A. Systems for therapeutic angiogenesis in tissue engineering. World J Urol. 2000;18(1):10- 18. doi:10.1007/pl00007070.
  11. Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput. 2000;38(2):211-218. doi:10.1007/bf02344779.
  12. Eyre DR. Collagen: molecular diversity in the body’s protein scaffold. Science. 1980;207(4437):1315-1322. doi:10.1126/ science.207.4437.1315.
  13. Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E, Aghamollaei H. Preparation and in vitro characterization of cross-linked collagen– gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol. 2018; In Press. doi:10.1016/j. ijbiomac.2018.12.125.
  14. Yang C, Hillas PJ, Baez JA, et al. The application of recombinant human collagen in tissue engineering. BioDrugs. 2004;18(2):103- 119. doi:10.2165/00063030-200418020-00004.
  15. Kivirikko KI. Collagen biosynthesis: a mini-review cluster. Matrix Biol. 1998;16(7):355-356. doi:10.1016/S0945-053X(98)90008-7.
  16. Davison PF, Levine L, Drake MP, Rubin A, Bump S. The serologic specificity of tropocollagen telopeptides. J Exp Med. 1967;126(2):331-346. doi:10.1084/jem.126.2.331.
  17. Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res B Appl Biomater. 2004;71(2):343- 354. doi:10.1002/jbm.b.30096.
  18. Laiva AL, Raftery RM, Keogh MB, O’Brien FJ. Pro-angiogenic impact of SDF-1alpha gene-activated collagen-based scaffolds in stem cell driven angiogenesis. Int J Pharm. 2018;544(2):372-379. doi:10.1016/j.ijpharm.2018.03.032.
  19. Fujisato T, Sajiki T, Liu Q, Ikada Y. Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold. Biomaterials. 1996;17(2):155-162. doi:10.1016/0142-9612(96)85760-7.
  20. Xu XL, Lou J, Tang T, et al. Evaluation of different scaffolds for BMP- 2 genetic orthopedic tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;75(2):289-303. doi:10.1002/jbm.b.30299.
  21. Chandler LA, Gu DL, Ma C, et al. Matrix-enabled gene transfer for cutaneous wound repair. Wound Repair Regen. 2000;8(6):473- 479. doi:10.1046/j.1524-475x.2000.00473.x.
  22. Koch S, Yao C, Grieb G, Prevel P, Noah EM, Steffens GC. Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med. 2006;17(8):735-741. doi:10.1007/ s10856-006-9684-x.
  23. Pieper JS, Hafmans T, van Wachem PB, et al. Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats. J Biomed Mater Res. 2002;62(2):185-194. doi:10.1002/jbm.10267.
  24. Vashi AV, Abberton KM, Thomas GP, et al. Adipose tissue engineering based on the controlled release of fibroblast growth factor-2 in a collagen matrix. Tissue Eng. 2006;12(11):3035-3043. doi:10.1089/ten.2006.12.3035.
  25. Xiao Y, Qian H, Young WG, Bartold PM. Tissue engineering for bone regeneration using differentiated alveolar bone cells in collagen scaffolds. Tissue Eng. 2003;9(6):1167-1177. doi:10.1089/10763270360728071.
  26. Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells. 2006;24(11):2391-2397. doi:10.1634/ stemcells.2006-0253.
  27. Gruber HE, Hoelscher GL, Leslie K, Ingram JA, Hanley EN, Jr. Three-dimensional culture of human disc cells within agarose or a collagen sponge: assessment of proteoglycan production. Biomaterials. 2006;27(3):371-376. doi:10.1016/j. biomaterials.2005.06.032.
  28. Sumita Y, Honda MJ, Ohara T, et al. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials. 2006;27(17):3238-3248. doi:10.1016/j. biomaterials.2006.01.055.
  29. Dorotka R, Bindreiter U, Macfelda K, Windberger U, Nehrer S. Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis Cartilage. 2005;13(8):655-664. doi:10.1016/j.joca.2005.04.001.
  30. De Franceschi L, Grigolo B, Roseti L, et al. Transplantation of chondrocytes seeded on collagen-based scaffold in cartilage defects in rabbits. J Biomed Mater Res A. 2005;75(3):612-622. doi:10.1002/jbm.a.30471.
  31. Hemmrich K, von Heimburg D, Rendchen R, Di Bartolo C, Milella E, Pallua N. Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials. 2005;26(34):7025-7037. doi:10.1016/j.biomaterials.2005.04.065.
  32. Xiang Z, Liao R, Kelly MS, Spector M. Collagen-GAG scaffolds grafted onto myocardial infarcts in a rat model: a delivery vehicle for mesenchymal stem cells. Tissue Eng. 2006;12(9):2467-2478. doi:10.1089/ten.2006.12.2467.
  33. Danielsson C, Ruault S, Basset-Dardare A, Frey P. Modified collagen fleece, a scaffold for transplantation of human bladder smooth muscle cells. Biomaterials. 2006;27(7):1054-1060. doi:10.1016/j.biomaterials.2005.07.027.
  34. Wang PC, Takezawa T. Reconstruction of renal glomerular tissue using collagen vitrigel scaffold. J Biosci Bioeng. 2005;99(6):529- 540. doi:10.1263/jbb.99.529.
  35. Baek J, Sovani S, Choi W, Jin S, Grogan SP, D’Lima DD. Meniscal Tissue Engineering Using Aligned Collagen Fibrous Scaffolds: Comparison of Different Human Cell Sources. Tissue Eng Part A. 2018;24(1-2):81-93. doi:10.1089/ten.TEA.2016.0205.
  36. Wu T, Zheng H, Chen J, et al. Application of a bilayer tubular scaffold based on electrospun poly (l-lactide-co-caprolactone)/ collagen fibers and yarns for tracheal tissue engineering. J Mater Chem B. 2017;5(1):139-150. doi:10.1039/C6TB02484J.
  37. Kremer A, Ribitsch I, Reboredo J, et al. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering. Tissue Eng Part A. 2017;23(9-10):390-402. doi:10.1089/ten.TEA.2016.0317.
  38. Baheiraei N, Nourani MR, Mortazavi SMJ, et al. Development of a bioactive porous collagen/beta-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications. J Biomed Mater Res A. 2018;106(1):73-85. doi:10.1002/jbm.a.36207.
  39. Sayin E, Rashid RH, Rodriguez-Cabello JC, Elsheikh A, Baran ET, Hasirci V. Human adipose derived stem cells are superior to human osteoblasts (HOB) in bone tissue engineering on a collagen-fibroin-ELR blend. Bioact Mater. 2017;2(2):71-81. doi:10.1016/j. bioactmat.2017.04.001.
  40. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;83:195- 201. doi:10.1016/j.msec.2017.09.002.
  41. Quinlan E, Lopez-Noriega A, Thompson E, Kelly HM, Cryan SA, O’Brien FJ. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J Control Release. 2015;198:71-79. doi:10.1016/j.jconrel.2014.11.021.
  42. Zheng L, Jiang X, Chen X, Fan H, Zhang X. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering. Biomed Mater. 2014;9(6):065004. doi:10.1088/1748-6041/9/6/065004.
  43. Xu C, Su P, Chen X, et al. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials. 2011;32(4):1051-1058. doi:10.1016/j.biomaterials.2010.09.068.
  44. Caliari SR, Ramirez MA, Harley BA. The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering. Biomaterials. 2011;32(34):8990-8998. doi:10.1016/j. biomaterials.2011.08.035.
  45. Rnjak-Kovacina J, Wise SG, Li Z, et al. Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomater. 2012;8(10):3714-3722. doi:10.1016/j. actbio.2012.06.032.
  46. Saska S, Teixeira LN, de Oliveira PT, et al. Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J Mater Chem. 2012;22(41):22102-22112. doi:10.1039/C2JM33762B.
  47. Amruthwar SS, Janorkar AV. In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering. Dent Mater. 2013;29(2):211-220. doi:10.1016/j. dental.2012.10.003.
  48. Thein-Han W, Xu HH. Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering. Tissue Eng Part A. 2011;17(23-24):2943-2954. doi:10.1089/ten.tea.2010.0674.
  49. Ikada Y, Tabata Y. Protein release from gelatin matrices. Adv Drug Deliv Rev. 1998;31(3):287-301. doi:10.1016/S0169- 409X(97)00125-7.
  50. Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release. 2005;109(1-3):256-274. doi:10.1016/j.jconrel.2005.09.023.
  51. Djagny VB, Wang Z, Xu S. Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit Rev Food Sci Nutr. 2001;41(6):481-492. doi:10.1080/20014091091904.
  52. Shamosi A, Mehrabani D, Azami M, et al. Differentiation of human endometrial stem cells into endothelial-like cells on gelatin/ chitosan/bioglass nanofibrous scaffolds. Artif Cells Nanomed Biotechnol. 2017;45(1):163-173. doi:10.3109/21691401.2016.1 138493.
  53. Sharifi E, Ebrahimi-Barough S, Panahi M, et al. In vitro evaluation of human endometrial stem cell-derived osteoblast-like cells’ behavior on gelatin/collagen/bioglass nanofibers’ scaffolds. J Biomed Mater Res A. 2016;104(9):2210-2219. doi:10.1002/ jbm.a.35748.
  54. Nemati S, Rezabakhsh A, Khoshfetrat AB, et al. Alginate-gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu. Biotechnol Bioeng. 2017;114(12):2920-2930. doi:10.1002/bit.26395.
  55. Ren L, Osaka A, Yu B, et al. Bioactive gelatin-siloxane hybrids as tissue engineering scaffold. Solid State Phenomena. 2006;111:13- 18. doi:10.4028/www.scientific.net/SSP.111.13.
  56. Holland TA, Tabata Y, Mikos AG. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release. 2005;101(1-3):111-125. doi:10.1016/j.jconrel.2004.07.004.
  57. Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials. 2005;26(34):7095-7103. doi:10.1016/j. biomaterials.2005.05.083.
  58. Okamoto T, Yamamoto Y, Gotoh M, et al. Cartilage regeneration using slow release of bone morphogenetic protein-2 from a gelatin sponge to treat experimental canine tracheomalacia: a preliminary report. ASAIO J. 2003;49(1):63-69. doi:10.1097/00002480- 200301000-00010.
  59. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25(16):3211-3222. doi:10.1016/j.biomaterials.2003.10.045.
  60. Masuda T, Furue M, Matsuda T. Photocured, styrenated gelatin-based microspheres for de novo adipogenesis through corelease of basic fibroblast growth factor, insulin, and insulin-like growth factor I. Tissue Eng. 2004;10(3-4):523-535. doi:10.1089/107632704323061889.
  61. Payne RG, McGonigle JS, Yaszemski MJ, Yasko AW, Mikos AG. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials. 2002;23(22):4373-4380. doi:10.1016/S0142-9612(02)00185-0.
  62. Liu Y, Shu XZ, Prestwich GD. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng. 2006;12(12):3405-3416. doi:10.1089/ten.2006.12.3405.
  63. Malda J, Kreijveld E, Temenoff JS, van Blitterswijk CA, Riesle J. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials. 2003;24(28):5153-5161. doi:10.1016/S0142-9612(03)00428-9.
  64. Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater Res. 2000;52(2):246-255. doi:10.1002/1097- 4636(200011)52:23.0.CO;2-W.
  65. Gnavi S, di Blasio L, Tonda-Turo C, et al. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering. J Tissue Eng Regen Med. 2017;11(2):459-470. doi:10.1002/term.1936.
  66. Zhao X, Lang Q, Yildirimer L, et al. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Adv Healthc Mater. 2016;5(1):108-118. doi:10.1002/adhm.201500005.
  67. Yang G, Lin H, Rothrauff BB, Yu S, Tuan RS. Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering. Acta Biomater. 2016;35:68-76. doi:10.1016/j. actbio.2016.03.004.
  68. Huber B, Borchers K, Tovar GE, Kluger PJ. Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering. J Biomater Appl. 2016;30(6):699-710. doi:10.1177/0885328215587450.
  69. Sharifi E, Azami M, Kajbafzadeh AM, et al. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;59:533-541. doi:10.1016/j.msec.2015.09.037.
  70. Li P, Zhang W, Yu H, et al. Applying Electrospun Gelatin/Poly(lactic acid-co-glycolic acid) Bilayered Nanofibers to Fabrication of Meniscal Tissue Engineering Scaffold. J Nanosci Nanotechnol. 2016;16(5):4718-4726. doi:10.1166/jnn.2016.12412.
  71. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339-2349. doi:10.1016/S0142- 9612(03)00026-7.
  72. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J Control Release. 2006;114(1):1-14. doi:10.1016/j.jconrel.2006.04.017.
  73. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials. 2005;26(36):7616-7627. doi:10.1016/j. biomaterials.2005.05.036.
  74. 74. Karimi S, Salahinejad E, Shari E, Nourian A, Tayebi L. Bioperformance of chitosan/fluoride-doped diopside nanocomposite coatings deposited on medical stainless steel. Carbohydrate Polymers. 2018;202:600-610. doi:10.1016/j.carbpol.2018.09.022.
  75. Patel VR, Amiji MM. Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res. 1996;13(4):588- 593. doi:10.1023/a:1016054306763.
  76. Cheng NC, Lin WJ, Ling TY, Young TH. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater. 2017;51:258-267. doi:10.1016/j.actbio.2017.01.060.
  77. Arakawa C, Ng R, Tan S, Kim S, Wu B, Lee M. Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. J Tissue Eng Regen Med. 2017;11(1):164-174. doi:10.1002/term.1896.
  78. Delgado JJ, Evora C, Sanchez E, Baro M, Delgado A. Validation of a method for non-invasive in vivo measurement of growth factor release from a local delivery system in bone. J Control Release. 2006;114(2):223-229. doi:10.1016/j.jconrel.2006.05.026.
  79. Lee JY, Nam SH, Im SY, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release. 2002;78(1-3):187-197. doi:10.1016/S0168- 3659(01)00498-9.
  80. Zhang Y, Cheng X, Wang J, et al. Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering. Biochem Biophys Res Commun. 2006;344(1):362-369. doi:10.1016/j.bbrc.2006.03.106.
  81. Park YJ, Lee YM, Park SN, Sheen SY, Chung CP, Lee SJ. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials. 2000;21(2):153-159. doi:10.1016/S0142-9612(99)00143-X.
  82. Guo T, Zhao J, Chang J, et al. Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta1 for chondrocytes proliferation. Biomaterials. 2006;27(7):1095-1103. doi:10.1016/j.biomaterials.2005.08.015.
  83. Kim SE, Park JH, Cho YW, et al. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1: implications for cartilage tissue engineering. J Control Release. 2003;91(3):365-374. doi:10.1016/S0168-3659(03)00274-8.
  84. Lee JE, Kim KE, Kwon IC, et al. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials. 2004;25(18):4163-4173. doi:10.1016/j. biomaterials.2003.10.057.
  85. Chevrier A, Hoemann CD, Sun J, Buschmann MD. Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis Cartilage. 2007;15(3):316- 327. doi:10.1016/j.joca.2006.08.007.
  86. Fujita M, Ishihara M, Simizu M, et al. Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/non-anticoagulant heparin hydrogel. Biomaterials. 2004;25(4):699-706. doi:10.1016/S0142- 9612(03)00557-X.
  87. Fujita M, Ishihara M, Morimoto Y, et al. Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res. 2005;126(1):27-33. doi:10.1016/j.jss.2004.12.025.
  88. Alemdaroglu C, Degim Z, Celebi N, Zor F, Ozturk S, Erdogan D. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns. 2006;32(3):319-327. doi:10.1016/j.burns.2005.10.015.
  89. Obara K, Ishihara M, Ishizuka T, et al. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials. 2003;24(20):3437-3444. doi:10.1016/S0142-9612(03)00220-5.
  90. Goraltchouk A, Scanga V, Morshead CM, Shoichet MS. Incorporation of protein-eluting microspheres into biodegradable nerve guidance channels for controlled release. J Control Release. 2006;110(2):400-407. doi:10.1016/j.jconrel.2005.10.019.
  91. Fan M, Ma Y, Tan H, et al. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;71:67-74. doi:10.1016/j. msec.2016.09.068.
  92. Dhivya S, Keshav Narayan A, Logith Kumar R, Viji Chandran S, Vairamani M, Selvamurugan N. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Prolif. 2018;51(1). doi:10.1111/cpr.12408.
  93. Badhe RV, Bijukumar D, Chejara DR, et al. A composite chitosan-gelatin bi-layered, biomimetic macroporous scaffold for blood vessel tissue engineering. Carbohydr Polym. 2017;157:1215- 1225. doi:10.1016/j.carbpol.2016.09.095.
  94. Wang Y, Qian J, Zhao N, Liu T, Xu W, Suo A. Novel hydroxyethyl chitosan/cellulose scaffolds with bubble-like porous structure for bone tissue engineering. Carbohydr Polym. 2017;167:44-51. doi:10.1016/j.carbpol.2017.03.030.
  95. Atak BH, Buyuk B, Huysal M, et al. Preparation and characterization of amine functional nano-hydroxyapatite/ chitosan bionanocomposite for bone tissue engineering applications. Carbohydr Polym. 2017;164:200-213. doi:10.1016/j. carbpol.2017.01.100.
  96. Liu Y, Wang S, Zhang R. Composite poly(lactic acid)/ chitosan nanofibrous scaffolds for cardiac tissue engineering. Int J Biol Macromol. 2017;103:1130-1137. doi:10.1016/j. ijbiomac.2017.05.101.
  97. Grolik M, Kuzmicz D, Dobrowolski D, et al. Silicone-Modified Chitosan Membranes for Corneal Epithelium Tissue Engineering. J Biomater Tissue Eng. 2018;8(3):374-383. doi:10.1166/ jbt.2018.1746.
  98. Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401-416. doi:10.1016/S0142- 9612(02)00353-8.
  99. Hinman MB, Jones JA, Lewis RV. Synthetic spider silk: a modular fiber. Trends Biotechnol. 2000;18(9):374-379. doi:10.1016/ S0167-7799(00)01481-5.
  100. Tamada Y. New process to form a silk fibroin porous 3-D structure. Biomacromolecules. 2005;6(6):3100-3106. doi:10.1021/ bm050431f.
  101. Kasoju N, Bora U. Silk fibroin in tissue engineering. Adv Healthc Mater. 2012;1(4):393-412. doi:10.1002/adhm.201200097.
  102. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem. 2000;275(51):40517-40528. doi:10.1074/jbc.M006897200.
  103. Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials. 2005;26(14):1987-1999. doi:10.1016/j.biomaterials.2004.06.036.
  104. Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials. 2005;26(17):3385-3393. doi:10.1016/j. biomaterials.2004.09.020.
  105. Liu y, Qu J, Li M. Accelerated Vascularization of Silk Fibroin Scaffolds Through Immobilized Basic Fibroblast Growth Factor (bFGF). DEStech Transactions on Engineering and Technology Research Apetc; 2017. doi:10.12783/dtetr/apetc2017/11439.
  106. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk- BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006;27(16):3115-3124. doi:10.1016/j.biomaterials.2006.01.022.
  107. Fini M, Motta A, Torricelli P, et al. The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials. 2005;26(17):3527-3536. doi:10.1016/j. biomaterials.2004.09.040.
  108. Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials. 2004;25(21):5137-5146. doi:10.1016/j. biomaterials.2003.12.040.
  109. Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials. 2005;26(34):7082- 7094. doi:10.1016/j.biomaterials.2005.05.022.
  110. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25(7-8):1289-1297. doi:10.1016/j. biomaterials.2003.08.045.
  111. Lv Q, Feng Q, Hu K, Cui F. Three-dimensional fibroin/collagen scaffolds derived from aqueous solution and the use for HepG2 culture. Polymer. 2005;46(26):12662-12669. doi:10.1016/j. polymer.2005.10.137.
  112. Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002;23(20):4131- 4141. doi:10.1016/S0142-9612(02)00156-4.
  113. Meinel AJ, Kubow KE, Klotzsch E, et al. Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials. 2009;30(17):3058-3067. doi:10.1016/j. biomaterials.2009.01.054.
  114. Sahoo S, Toh SL, Goh JC. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials. 2010;31(11):2990- 2998. doi:10.1016/j.biomaterials.2010.01.004.
  115. Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012;8(1):289-301. doi:10.1016/j.actbio.2011.09.037.
  116. Correia C, Bhumiratana S, Yan LP, et al. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater. 2012;8(7):2483-2492. doi:10.1016/j.actbio.2012.03.019.
  117. Liu H, Li X, Zhou G, Fan H, Fan Y. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials. 2011;32(15):3784-3793. doi:10.1016/j. biomaterials.2011.02.002.
  118. Gotoh Y, Ishizuka Y, Matsuura T, Niimi S. Spheroid formation and expression of liver-specific functions of human hepatocellular carcinoma-derived FLC-4 cells cultured in lactose-silk fibroin conjugate sponges. Biomacromolecules. 2011;12(5):1532-1539. doi:10.1021/bm101495c.
  119. Gotoh Y, Niimi S, Hayakawa T, Miyashita T. Preparation of lactose-silk fibroin conjugates and their application as a scaffold for hepatocyte attachment. Biomaterials. 2004;25(6):1131-1140. doi:10.1016/S0142-9612(03)00633-1.
  120. Roh DH, Kang SY, Kim JY, et al. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J Mater Sci Mater Med. 2006;17(6):547-552. doi:10.1007/s10856- 006-8938-y.
  121. Yoo CR, Yeo IS, Park KE, et al. Effect of chitin/silk fibroin nanofibrous bicomponent structures on interaction with human epidermal keratinocytes. Int J Biol Macromol. 2008;42(4):324- 334. doi:10.1016/j.ijbiomac.2007.12.004.
  122. Hu K, Cui F, Lv Q, et al. Preparation of fibroin/recombinant human-like collagen scaffold to promote fibroblasts compatibility. J Biomed Mater Res A. 2008;84(2):483-490. doi:10.1002/ jbm.a.31440.
  123. Yeo IS, Oh JE, Jeong L, et al. Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures. Biomacromolecules. 2008;9(4):1106-1116. doi:10.1021/bm700875a.
  124. Qian Y, Shen Y, Lu Z, et al. [Biocompatibility of silk fibroin nanofibers scaffold with olfactory ensheathing cells]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2009;23(11):1365-1370.
  125. Shen Y, Qian Y, Zhang H, et al. Guidance of olfactory ensheathing cell growth and migration on electrospun silk fibroin scaffolds. Cell Transplant. 2010;19(2):147-157. doi:10.3727/096368910x492616.
  126. Ni Y, Zhao X, Zhou L, et al. Radiologic and histologic characterization of silk fibroin as scaffold coating for rabbit tracheal defect repair. Otolaryngol Head Neck Surg. 2008;139(2):256-261. doi:10.1016/j.otohns.2008.03.028.
  127. Zang M, Zhang Q, Davis G, et al. Perichondrium directed cartilage formation in silk fibroin and chitosan blend scaffolds for tracheal transplantation. Acta Biomater. 2011;7(9):3422-3431. doi:10.1016/j.actbio.2011.05.012.
  128. Levin B, Redmond SL, Rajkhowa R, Eikelboom RH, Marano RJ, Atlas MD. Preliminary results of the application of a silk fibroin scaffold to otology. Otolaryngol Head Neck Surg. 2010;142(3 Suppl 1):S33-35. doi:10.1016/j.otohns.2009.06.746.
  129. Ghassemifar R, Redmond S, Zainuddin, Chirila TV. Advancing towards a tissue-engineered tympanic membrane: silk fibroin as a substratum for growing human eardrum keratinocytes. J Biomater Appl. 2010;24(7):591-606. doi:10.1177/0885328209104289.
  130. Stoppel WL, Hu D, Domian IJ, Kaplan DL, Black LD, 3rd. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. Biomed Mater. 2015;10(3):034105. doi:10.1088/1748-6041/10/3/034105.
  131. Ribeiro M, de Moraes MA, Beppu MM, et al. Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering. Eur Polym J. 2015;67:66-77. doi:10.1016/j. eurpolymj.2015.03.056.
  132. Yang JW, Zhang YF, Sun ZY, Song GT, Chen Z. Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. J Biomater Appl. 2015;30(2):221-229. doi:10.1177/0885328215577296.
  133. Zhang X, Jia C, Qiao X, Liu T, Sun K. Silk fibroin microfibers and chitosan modified poly (glycerol sebacate) composite scaffolds for skin tissue engineering. Polym Test. 2017;62:88-95. doi:10.1016/j. polymertesting.2017.06.012.
  134. Xue C, Zhu H, Tan D, et al. Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs. J Tissue Eng Regen Med. 2018;12(2):e1143-e1153. doi:10.1002/term.2449.
  135. Barsotti MC, Felice F, Balbarini A, Di Stefano R. Fibrin as a scaffold for cardiac tissue engineering. Biotechnol Appl Biochem. 2011;58(5):301-310. doi:10.1002/bab.49.
  136. Aper T, Schmidt A, Duchrow M, Bruch HP. Autologous blood vessels engineered from peripheral blood sample. Eur J Vasc Endovasc Surg. 2007;33(1):33-39. doi:10.1016/j.ejvs.2006.08.008.
  137. Neidert MR, Lee ES, Oegema TR, Tranquillo RT. Enhanced fibrin remodeling in vitro with TGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials. 2002;23(17):3717- 3731. doi:10.1016/S0142-9612(02)00106-0.
  138. Wechselberger G, Russell RC, Neumeister MW, Schoeller T, Piza- Katzer H, Rainer C. Successful transplantation of three tissue-engineered cell types using capsule induction technique and fibrin glue as a delivery vehicle. Plast Reconstr Surg. 2002;110(1):123- 129. doi:10.1097/00006534-200207000-00022.
  139. Willerth SM, Arendas KJ, Gottlieb DI, Sakiyama-Elbert SE. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials. 2006;27(36):5990-6003. doi:10.1016/j.biomaterials.2006.07.036.
  140. Schantz JT, Brandwood A, Hutmacher DW, Khor HL, Bittner K. Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. J Mater Sci Mater Med. 2005;16(9):807-819. doi:10.1007/s10856-005-3584-3.
  141. Eyrich D, Brandl F, Appel B, et al. Long-term stable fibrin gels for cartilage engineering. Biomaterials. 2007;28(1):55-65. doi:10.1016/j.biomaterials.2006.08.027.
  142. Hunter CJ, Mouw JK, Levenston ME. Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthritis Cartilage. 2004;12(2):117- 130. doi:10.1016/j.joca.2003.08.009.
  143. Perka C, Schultz O, Lindenhayn K, et al. Joint cartilage repair with transplantation of embryonic chondrocytes embedded in collagen-fibrin matrices. Clin Exp Rheumatol. 2000;18(1):13-22.
  144. Dohle E, El Bagdadi K, Sader R, Choukroun J, James Kirkpatrick C, Ghanaati S. Platelet-rich fibrin-based matrices to improve angiogenesis in an in vitro co-culture model for bone tissue engineering. J Tissue Eng Regen Med. 2018;12(3):598-610. doi:10.1002/term.2475.
  145. Rai B, Teoh SH, Hutmacher DW, Cao T, Ho KH. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials. 2005;26(17):3739-3748. doi:10.1016/j. biomaterials.2004.09.052.
  146. Schmoekel H, Schense JC, Weber FE, et al. Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. J Orthop Res. 2004;22(2):376-381. doi:10.1016/s0736-0266(03)00188-8.
  147. Jeon O, Ryu SH, Chung JH, Kim BS. Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release. 2005;105(3):249-259. doi:10.1016/j.jconrel.2005.03.023.
  148. Taylor SJ, McDonald JW, 3rd, Sakiyama-Elbert SE. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release. 2004;98(2):281-294. doi:10.1016/j. jconrel.2004.05.003.
  149. Lee AC, Yu VM, Lowe JB, 3rd, et al. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol. 2003;184(1):295-303. doi:10.1016/S0014-4886(03)00258-9.
  150. Ameer GA, Mahmood TA, Langer R. A biodegradable composite scaffold for cell transplantation. J Orthop Res. 2002;20(1):16-19. doi:10.1016/s0736-0266(01)00074-2.
  151. Perka C, Spitzer RS, Lindenhayn K, Sittinger M, Schultz O. Matrix-mixed culture: new methodology for chondrocyte culture and preparation of cartilage transplants. J Biomed Mater Res. 2000;49(3):305-311. doi:10.1002/(SICI)1097- 4636(20000305)49:33.0.CO;2-9.
  152. Rowe SL, Lee S, Stegemann JP. Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomater. 2007;3(1):59-67. doi:10.1016/j. actbio.2006.08.006.
  153. Mol A, van Lieshout MI, Dam-de Veen CG, et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials. 2005;26(16):3113-3121. doi:10.1016/j. biomaterials.2004.08.007.
  154. Zhou H, Xu HH. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials. 2011;32(30):7503-7513. doi:10.1016/j. biomaterials.2011.06.045.
  155. Chekanov V, Akhtar M, Tchekanov G, et al. Transplantation of autologous endothelial cells induces angiogenesis. Pacing Clin Electrophysiol. 2003;26(1 Pt 2):496-499. doi:10.1046/j.1460- 9592.2003.00080.x.
  156. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol. 2004;44(3):654-660. doi:10.1016/j.jacc.2004.04.040.
  157. Birla RK, Borschel GH, Dennis RG, Brown DL. Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 2005;11(5-6):803-813. doi:10.1089/ten.2005.11.803.
  158. Ryu JH, Kim IK, Cho SW, et al. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials. 2005;26(3):319-326. doi:10.1016/j.biomaterials.2004.02.058.
  159. Flanagan TC, Cornelissen C, Koch S, et al. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials. 2007;28(23):3388- 3397. doi:10.1016/j.biomaterials.2007.04.012.
  160. Terrovitis J, Lautamaki R, Bonios M, et al. Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol. 2009;54(17):1619- 1626. doi:10.1016/j.jacc.2009.04.097.
  161. Zhang X, Wang H, Ma X, et al. Preservation of the cardiac function in infarcted rat hearts by the transplantation of adipose-derived stem cells with injectable fibrin scaffolds. Exp Biol Med (Maywood). 2010;235(12):1505-1515. doi:10.1258/ebm.2010.010175.
  162. Martens TP, Godier AF, Parks JJ, et al. Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant. 2009;18(3):297-304. doi:10.3727/096368909788534915.
  163. Johnson PJ, Parker SR, Sakiyama-Elbert SE. Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J Biomed Mater Res A. 2010;92(1):152- 163. doi:10.1002/jbm.a.32343.
  164. Almeida HV, Eswaramoorthy R, Cunniffe GM, Buckley CT, O’Brien FJ, Kelly DJ. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration. Acta Biomater. 2016;36:55-62. doi:10.1016/j.actbio.2016.03.008.
  165. Singaravelu S, Ramanathan G, Raja MD, et al. Biomimetic interconnected porous keratin-fibrin-gelatin 3D sponge for tissue engineering application. Int J Biol Macromol. 2016;86:810-819. doi:10.1016/j.ijbiomac.2016.02.021.
  166. Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers. 2010;2(4):522-553. doi:10.3390/polym2040522.
  167. Rouwkema J, Khademhosseini A. Vascularization and Angiogenesis in Tissue Engineering: Beyond Creating Static Networks. Trends Biotechnol. 2016;34(9):733-745. doi:10.1016/j. tibtech.2016.03.002.
  168. Koffler J, Kaufman-Francis K, Shandalov Y, et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci U S A. 2011;108(36):14789- 14794. doi:10.1073/pnas.1017825108.
  169. Patterson J, Martino MM, Hubbell JA. Biomimetic materials in tissue engineering. Mater Today. 2010;13(1-2):14-22. doi:10.1016/ S1369-7021(10)70013-4.