Inhibition of Peroxidase Activity by Methylxanthines

Document Type : Original Article


Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran


Introduction: Peroxidase (POD) is an important antioxidant enzyme that catalyzes oxidation of a number of organic and non-organic substrates using hydrogen peroxide as the electron acceptor. At physiological low levels, reactive oxygen species (ROS) can act as redox messengers in the regulation of intracellular signaling. However, in excess amounts they can suppress the immune system and cause oxidative stress. Considering the high consumption of tea and coffee as the most common drink in the world, in the present study the effect of caffeine and theophylline on the activity of POD has been investigated.
Materials and Methods: The activity of POD was measured by following absorption at 510 nm due to the oxidation of 4-aminoantipyrine in the absence and presence of caffeine and theophylline. The enzyme kinetic parameters were then measured and compared in each case.
Results: It was shown that both methylxanthines acted as inhibitors with IC50' the amount of inhibitor to reduce the enzyme activity by 50%, of 0.6 and mM 0.55 mM for caffeine and theophylline respectively. The kinetic constants, Km and Vmax' indicated that both inhibitors worked by an un-competitive mechanism on POD activity. The values of Ki were calculated as 0.08 and 0.045 mM for caffeine and theophylline respectively.
Conclusions: Lower values of IC50 and Ki for theophylline compared to caffeine, led us to a final conclusion that theophylline is a stronger inhibitor of POD than caffeine.


  1. Lin M, Nagata T, Katahira M. High yield production of fungal manganese peroxidases by E. coli through soluble expression, and examination of the activities. Protein Express Puri. 2018;145:45-52. Doi:10.1016/j.pep.2017.12.012.
  2. Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biologi Interact. 2006;160(1):1-40. Doi:10.1016/j.cbi.2005.12.009.
  3. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97:55-74. 10.1016/j.ejmech.2015.04.040.
  4. Gammella E, Recalcati S, Cairo G. Dual role of ROS as signal and stress agents: iron tips the balance in favor of toxic effects. Oxid Med Cell Long. 2016;2016:8629024. Doi:10.1155/2016/8629024.
  5. Di Meo S, Reed TT, Venditti P, Victor VM. Harmful and beneficial role of ROS. Oxid Med Cell Long. 2016;2016:7909186. Doi:10.1155/2016/7909186.
  6. Barnes P, Pauwels R. Theophylline in the management of asthma: time for reappraisal? Eur Resp J. 1994;7(3):579-591.
  7. Barnes PJ. Theophylline: new perspectives for an old drug. Am J Resp Crit Care Med. 2003;167(6):813-818. Doi:10.1164/ rccm.200210-1142PP.
  8. Barnes PJ. Theophylline in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):334-339. Doi:10.1513/ pats.200504-024SR.
  9. Broeke RT, Leusink-Muis T, Hilberdink R, et al. Specific modulation of calmodulin activity induces a dramatic production of superoxide by alveolar macrophages. Lab Invest. 2004;84(1):29- 40. Doi:10.1038/sj.labinvest.3700002.
  10. Lara DR. Caffeine, mental health and psychiatric disorders. J Alzh dis. 2010;20 Suppl 1:239-248. Doi:10.3233/JAD-2010-1378.
  11. Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nut. 2006;46(2):101-123. Doi:10.1080/10408390500400009.
  12. Rivera-Oliver M, Díaz-Ríos M. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci. 2014;101(1-2):1-9. Doi:10.1016/j.lfs.2014.01.083.
  13. Mukhopadhyay S, Mondal A, Poddar MK. Chronic administration of caffeine: effect on the activities of hepatic antioxidant enzymes of Ehrlich ascites tumor-bearing mice. Indi J Exp Biol. 2003;41:283-289.
  14. Sariri R, Sajedi R, Jafarian V. Inhibition of horseradish peroxidase activity by thiol type inhibitors. J Mol Liq. 2006;123:20-23. Doi:10.1016/j.molliq.2005.05.004.
  15. Copeland RA. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis. John Wiley & Sons; 2004.
  16. Garrett RH, Grisham CM. Biochemistry. Virginia: University of Virginia; 2017:190-214.
  17. Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11-19. Doi:10.1016/j.tplants.2016.08.002.
  18. Bhattacharya S. Reactive oxygen species and cellular defense system. In: Rani V, Yadav U, eds. Free Radicals in Human Health and Disease. New Delhi: Springer; 2015:17-29. Doi:10.1007/978- 81-322-2035-0_2.
  19. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem, 2004;266(1-2):37-56. Doi:10.1023/B:MCBI.0000049134.69131.89.
  20. Pham-Huy LA, He H, Pham-Huy C. Free raicals, antioxidants in disease and health. Inter J Biomed Sci. 2008;4(2):89-95.
  21. Ikehata K, Buchanan ID, Smith DW. Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. J Environ Eng Sci. 2004;3(1):1-19. Doi:10.1139/ s03-077.
  22. Sung JH, Chang CC, Chang YS. The effect of caffeine on the antioxidative activities of mouse liver. Korean J Food Nutr. 2004;17:442-449.
  23. Gibbs BF, Silva IG, Prokhorof A, et al. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity. Oncotarhet. 2015;6(30):28678–28692. Doi:10.18632/ oncotarget.5212.
  24. Glogowski J, Danforth DR, Ciereszeko A. Inhibition of alkaline phosphatase activity of boar semen by pentoxifylline, caffeine, and theophylline. J Androl. 2002;23(6):783-792. Doi:10.1002/j.1939-4640.2002.tb02334.x.
  25. Al-Qaisi ZHJ, Abbass SAR, Abdullah AH. Effect of caffeine on some transferase enzymes activities. Inter J Chem. 2011:3:140-147.
  26. Ali YO, Bradley G, Lu HC. Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Sci Rep. 2017;7:43846. Doi:10.1038/ srep43846.
  27. Ali YO, Allen HM, Li-Kroeger D, et al. NMNAT2:HSP90 complex mediates proteostasis in proteinopathies. PLoS Biol. 2016;14(6):e1002472. Doi:10.1371/journal.pbio.1002472.
  28. Walker LJ, Summers DW, Sasaki Y, et al. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. Elife. 2017;6:e22540. doi:10.7554/eLife.22540.
  29. Petzer A, Pienaar A, Petzer JP. The interactions of caffeine with monoamine oxidase. Life Sci. 2013;93(7):283-287. Doi:10.1016/j.lfs.2013.06.020.