TiO2 (Anatase) Nanoparticles a Novel Catalyst for Synthesis of vic-Diacetates as Biologically Active Compounds

Document Type : Original Article


1 Department of Chemistry, Faculty of Science, Zanjan University, Zanjan, Iran

2 Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran



Introduction: This study represents efficient ring opening of epoxides to the corresponding vicinal diacetates in the presence of acetic anhydride. Different catalyst including molecular sieves, zirconyl triflate, LiClO4, zeolite, LiAlH4 and some other catalyst were reported so far as efficient catalyst for epoxide ring opening and subsequent diacetylation. In the present study, catalytic amount of commercially available TiO2 (anatase) nanoparticles (NPs) were used to promote reactions.
Materials and Methods: According to X-ray diffraction (XRD) patterns, anatase is the main phase of the TiO2 and scanning electron microscope (SEM) images revealed almost all the particles are under 100 nm in size. Existence of just oxygen and titanium peaks in EDS spectrum confirms high purity of catalyst.
Results: It was found that catalyst revealed good reusability and could be used in 3 cycles without marked loss of efficiency for synthesis of vic-diacetates from epoxides. Reactions of structurally diverse epoxides in the presence of acetic anhydride and catalytic amount of titanium dioxide were set at 100°C, progress of the reactions were monitored by thin layer chromatography (TLC) and gas chromatography (GC) which resulted in good to excellent yields.
Conclusions: In brief, the current work represents an efficient procedure for one-pot conversion of structurally different epoxides to the corresponding vic-diacetates. Comparison of cyclohexene oxide acetylation in the presence of titanium dioxide NPs and other catalyst confirmed acceptable efficiency of anatase titanium dioxide as a clean, safe and low cost catalyst for reaction promotion.


  1. Carlsson AJ, Bauer P, Ma H, Widersten M. Obtaining optical purity for product diols in enzyme-catalyzed epoxide hydrolysis: contributions from changes in both enantio- and regioselectivity. Biochemistry. 2012;51(38):7627-7637. doi:10.1021/bi3007725.
  2. Brahmachari G. Green Synthetic Approaches for Biologically Relevant Heterocycles. Elsevier; 2015:1-6.
  3. Dalpozzo R, De Nino A, Nardi M, Russo B, Procopio B. 1,2-diacetates by epoxide ring opening promoted by erbium(III) triflate. ARKIVOC. 2006;2006(6):67-73. doi:10.3998/ ark.5550190.0007.607.
  4. Gilanizadeh M, Zeynizadeh B. 4Å molecular sieves catalyzed ring-opening of epoxides to 1, 2-diacetates with acetic anhydride. Curr Chem Lett. 2015;4(4):153-158. doi:10.5267/j.ccl.2015.6.002.
  5. Das B, Reddy VS, Tehseen F. A mild, rapid and highly regioselective ring-opening of epoxides and aziridines with acetic anhydride under solvent-free conditions using ammonium-12- molybdophosphate. Tetrahedron Lett. 2006;47(38):6865-6868. doi:10.1016/j.tetlet.2006.07.055.
  6. Moghadam M, Mohammadpoor-Baltork I, Tangestaninejad S, et al. Zirconyl triflate, [ZrO(OTf)2], as a new and highly efficient catalyst for ring-opening of epoxides. J Iran Chem Soc. 2009;6(4):789-799. doi:10.1007/bf03246171.
  7. Zeynizadeh B, Sadighnia L. A green protocol for catalytic conversion of epoxides to 1,2-diacetoxy esters with phosphomolybdic acid alone or its supported on silica gel. Bull Korean Chem Soc. 2010;31:2644-2648.
  8. Azizi N, Mirmashhori B, Saidi MR. Lithium perchlorate promoted highly regioselective ring opening of epoxides under solvent-free conditions. Catal Commun. 2007;8(12):2198-2203. doi:10.1016/j. catcom.2007.04.032.
  9. Fan RH, Hou XL. Tributylphosphine-catalyzed ring-opening reaction of epoxides and aziridines with acetic anhydride. Tetrahedron Lett. 2003;44(23):4411-4413. doi:10.1016/S0040- 4039(03)00943-2.
  10. Ramesh P, Reddy VL, Venugopal D, Subrahmanyam M, Venkateswarlu Y. Zeolite catalyzed ring opening of epoxides to acetylated diols with acetic anhydride. Synth Commun. 2001;31(17):2599-2604. doi:10.1081/SCC-100105384.
  11. Zeynizadeh B, Sadighnia L. One-pot catalytic conversion of epoxides to 1,2-diacetates with hydride transferring agents in acetic anhydride. Synth Commun. 2011;41(5):637-644. doi:10.1080/00397911003629515.
  12. Chen X, Wu H, Wang S, Huang S. Nano-TiO2: an efficient and reusable heterogeneous catalyst for ring opening of epoxides under solvent-free conditions. Synth Commun. 2012;42(16):2440- 2452. doi:10.1080/00397911.2011.559608.
  13. Mendez MA, Cano A, Suarez MF. Sonophotocatalytic oxidation of elemental sulphur on titanium dioxide. Ultrason Sonochem. 2007;14(3):337-342. doi:10.1016/j.ultsonch.2006.07.002.
  14. Tajbakhsh M, Alaee E, Alinezhad H, et al. Titanium Dioxide Nanoparticles Catalyzed Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives. Chin J Catal. 2012;33(9):1517- 1522. doi:10.1016/S1872-2067(11)60435-X.
  15. Haghighi M, Nikoofar K. Nano TiO2/SiO2: An efficient and reusable catalyst for the synthesis of oxindole derivatives. J Saudi Chem Soc. 2016;20(1):101-106. doi:10.1016/j.jscs.2014.09.002.
  16. Wang Z, Yin Y, Williams T, Wang H, Sun C, Zhang X. Metal link: A strategy to combine graphene and titanium dioxide for enhanced hydrogen production. Int J Hydrogen Energy. 2016;41(47):22034- 22042. doi:10.1016/j.ijhydene.2016.08.102.
  17. Su K, Li Z, Cheng B, liao K, Shen D, Wang Y. Studies on the carboxymethylation and methylation of bisphenol A with dimethyl carbonate over TiO2/SBA-15. J Mol Catal A Chem. 2010;315(1):60- 68. doi:10.1016/j.molcata.2009.08.027.
  18. Sreekanth TVM, Shim JJ, Lee YR. Degradation of organic pollutants by bio-inspired rectangular and hexagonal titanium dioxide nanostructures. J Photochem Photobiol B. 2017;169:90-95. doi:10.1016/j.jphotobiol.2017.03.006.
  19. Wang Z, Yin Y, Williams T, Wang H, Sun C, Zhang X. Metal link: A strategy to combine graphene and titanium dioxide for enhanced hydrogen production. Int J Hydrogen Energy. 2016;41(47):22034- 22042. doi:10.1016/j.ijhydene.2016.08.102.
  20. Atchudan R, Jebakumar Immanuel Edison TN, Perumal S, Karthikeyan D, Lee YR. Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation. J Photochem Photobiol A Chem. 2017;333:92-104. doi:10.1016/j. jphotochem.2016.10.021.
  21. Rostami-Vartooni A, Nasrollahzadeh M, Salavati-Niasari M, Atarod M. Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract. J Alloys Compd. 2016;689:15-20. doi:10.1016/j.jallcom.2016.07.253.
  22. Anas M, Han Dong S, Mahmoud K, Park H, Abdel-Wahab A. Photocatalytic degradation of organic dye using titanium dioxide modified with metal and non-metal deposition. Mater Sci Semicond Process. 2016;41:209-218. doi:10.1016/j.mssp.2015.08.041.
  23. Fang W, Chen J, Zhang Q, Deng W, Wang Y. Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold size effects. Chemistry. 2011;17(4):1247-1256. doi:10.1002/chem.201002469.
  24. Xue Y, Lu G, Guo Y, Guo Y, Wang Y, Zhang Z. Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO. Applied Catalysis B: Environmental. 2008;79(3):262-269. doi:10.1016/j.apcatb.2007.10.027.
  25. Kraeutler B, Bard AJ. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. J Am Chem Soc. 1978;100(13):4317-4318. doi:10.1021/ja00481a059.
  26. Xu J, Li K, Shi W, Li R, Peng T. Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. J Power Sources. 2014;260:233-242. doi:10.1016/j.jpowsour.2014.02.092.
  27. Eschemann TO, Bitter JH, de Jong KP. Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer– Tropsch synthesis. Catal Today. 2014;228:89-95. doi:10.1016/j. cattod.2013.10.041.
  28. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006;6(2):215-218. doi:10.1021/nl052099j.
  29. Venkatachalam N, Palanichamy M, Murugesan V. Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A Chem. 2007;273(1-2):177-185. doi:10.1016/j. molcata.2007.03.077.
  30. Posner GH, Rogers DZ. Organic reactions at alumina surfaces. Mild and selective opening of epoxides by alcohols, thiols, benzeneselenol, amines, and acetic acid. J Am Chem Soc. 1977;99(25):8208-8214. doi:10.1021/ja00467a014.
  31. Gilanizadeh M, Zeynizadeh B. Facile conversion of epoxides to 1,2-diacetates with NaOAc•3H2O/Ac2O system. Iran J Chem Chem Eng. 2016;35(1):25-29.