Isolation and Identification of a Keratinolytic Bacillus cereus and Optimization of Keratinase Production

Document Type : Original Article


National Institute of Genetic Engineering and Biotechnology, Iran, Tehran


A keratin-degrading bacterium was selected from a bacterial collection of the Najm Biotech Company. Molecular identification indicated that the bacterium is a strain of Bacillus cereus, which can grow and produce keratinase in basal medium containing feather as sole source of carbon and energy. The physicochemical condition (pH, temperature, incubation time, feather concentration) of keratinase production of the isolated B.cereus strain was optimized using response surface methodology (RSM). A maximum keratinase production of 350 U/ml was achieved in 96 h under optimized conditions.


  1. Jeong, J.-H., Park, K.-H., Oh, D.-J., Hwang, D.-Y., Kim, H.-S., Lee, C.-Y., et al., Keratinolytic enzyme-mediated biodegradation of recalcitrant feather by a newly isolated Xanthomonas sp. P5. Polym Degrad Stab, 2010, Vol. 95, pp. 1969-1977.
  2. Manju, R., Isolation, Identification, Characterisation Of Bacterial Species From Keratinase Producing Microorganism. Microbiol, 2012, Vol. 1, pp. 1-6.
  3. Thys, R., Brandelli, A., Purification and properties of a keratinolytic metalloprotease from Microbacterium sp. J Appl Microbiol, 2006, Vol. 101, pp. 1259-1268.
  4. Sekar, V., Kannan, M., Ganesan, R., Dheeba, B., Sivakumar, N., Kannan, K., Isolation and Screening of Keratinolytic Bacteria from Feather Dumping Soil in and Around Cuddalore and Villupuram, Tamil Nadu. P Natl A Sci India B, 2016, Vol. 86, pp. 567-575.
  5. Gupta, R., Ramnani, P., Microbial keratinases and their prospective applications: an overview. Appl Microbiol  Biotechnol, 2006, Vol. 70, pp. 21-26.
  6. Syed, D.G., Lee, J.C., Li, W.-J., Kim, C.-J., Agasar, D., Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour Technol, 2009, Vol. 100, pp. 1868-1871.
  7. Purchase, D., Microbial keratinases: characteristics, biotechnological applications and potential. The Handbook of Microbial Bioresources, 2016.
  8. Lv, L.-X., Sim, M.-H., Li, Y.-D., Min, J., Feng, W.-H., Guan, W.-J., et al., Production, characterization and application of a keratinase from Chryseobacterium L99 sp. nov. Proc Biochem, 2010, Vol. 45, pp. 1236-1244.
  9. Puri, S., Beg, Q.K., Gupta, R., Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr Microbiol, 2002, Vol. 44, pp. 286-290.
  10. Sarker, P.K., Talukdar, S.A., Deb, P., Sayem, S.A., Mohsina, K., Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003. Springer Plus, 2013, Vol. 2, pp. 506.
  11. Zarenejad, F., Yakhchali, B., Rasooli, I., Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World J Microbiol Biotechnol, 2012, Vol. 28, pp. 99-104.
  12. Takiuchi, I., Sei, Y., Takagi, H., Negi, M., Partial characterization of the extracellular keratinase from Microsporum canis. Sabouraudia, 1984, Vol. 22, pp. 219-224.
  13. Onifade, A., Al-Sane, N., Al-Musallam, A., Al-Zarban, S., A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol, 1998, Vol. 66, pp. 1-11.
  14. Boeckle, B., Galunsky, B., Mueller, R., Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530. Appl Environ Microbiol, 1995, Vol. 61, pp. 3705-3710.
  15. Zaghloul, T.I., Cloned Bacillus subtilis alkaline protease (aprA) gene showing high level of keratinolytic activity. Appl Biochem Biotechnol, 1998, Vol. 70, pp. 199-205.
  16. Cao, Z.-J., Zhang, Q., Wei, D.-K., Chen, L., Wang, J., Zhang, X.-Q., et al., Characterization of a novel Stenotrophomonas isolate with high keratinase activity and purification of the enzyme. J Ind Microbiol Biotechnol, 2009, Vol. 36, pp. 181-188.
  17. Cao, L., Tan, H., Liu, Y., Xue, X., Zhou, S., Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol, 2008, Vol. 46, pp. 389-394.
  18. Sivakumar, T., Shankar, T., Vijayabaskar, P., Ramasubramanian, V., Statistical optimization of keratinase production by Bacillus cereus. Global J Biotechnol Biochem, 2011, Vol. 6, pp. 197-202.
  19. De Toni, C., Richter, M., Chagas, J., Henriques, J.A., Termignoni, C., Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophilia strain. Can Journal Microbiol, 2002, Vol. 48, pp. 342-348.
  20. Shankar, T., Thangamathi, P., Sathiya, C., Sivakumar, T., Statistical optimization of keratinase production by Bacillus thuringiensis. J Global Biosci, 2014, Vol. 3, pp. 477-483.
  21. Moorthy, I.M.G., Baskar, R., Statistical modeling and optimization of alkaline protease production from a newly isolated alkalophilic Bacillus species BGS using response surface methodology and genetic algorithm. Prep Biochem Biotechnol, 2013, Vol. 43, pp. 293-314.
  22. Balakumar, S., Mahesh, N., Arunkumar, M., Sivakumar, R., Hemambujavalli, V., Optimization of keratinase production by keratinolytic organisms under submerged fermentation. Optimization, 2013, Vol. 5, pp. 1294-1300.
  23. Tiwary, E., Gupta, R., Medium optimization for a novel 58kDa dimeric keratinase from Bacillus licheniformis ER-15: Biochemical characterization and application in feather degradation and dehairing of hides. Bioresour Technol, 2010, Vol. 101, pp. 6103-6110.
  24. Fakhfakh-Zouari, N., Haddar, A., Hmidet, N., Frikha, F., Nasri, M., Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties. Proc Biochem, 2010, Vol. 45, pp. 617-626.
  25. Mohammadian, H., Rabbani, M., Hafizi, A., MirMohammad Sadeghi, H., Davary, A., Moazen, F., Optimization of alkaline protease production from a locally isolated Bacillus sp. ZR-5: Potential application as a detergent additive. Prog Biol Sci, 2015, Vol. 5, pp. 287-301.
  26. Korniłłowicz-Kowalska, T., Bohacz, J., Biodegradation of keratin waste: theory and practical aspects. Waste Manage, 2011, Vol. 31, pp. 1689-1701.