Diisopropyl-fluorophosphatase as a Catalytic Bioscavenger

Document Type : Review Article


Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran


Organophosphorus chemicals, used as pesticides and warfare nerve agent, are highly toxic compounds that inhibit acetylcholine esterase enzyme rapidly. A novel effective treatment for nerve gas poising is using of hydrolytic enzymes to
degradation of these agents.  Diisopropyl-fluorophosphatase (DFPase)  from Loligo vulgaris is highly stable and robust biocatalyst for the hydrolysis of various chemical warfare agents such as sarin, soman, tabun. Unfortunately, wild-type DFPase prefers less toxic isomers of these agents leading to slower detoxification. Also, due to non-human origin of the enzyme, immunological reactions occur when it is injected into body. In order to using DFPase as in vivo detoxifying agent, some manipulations to augment of its efficiency and to decrease of immunogenic problems are needed. Modifications such as PEGylation is one of the possible solutions to conquer these problems. Engineering of the enzyme for creating of new efficient variants is an interesting research field which leads to occurrence of novel and prominent bioscavenger, and delivery of these functional molecules to circulation in order to enzymatic hydrolysis of toxic agents would be the final object of research efforts.


  1. Raushel, F.M., Chemical biology: Catalytic detoxification. Nature, 2011, Vol. 469 (7330), pp. 310-311.
  2. Wymore, T., Fiel, M.J., Langan, P., Smith, J.C., Parks, J.M., Hydrolysis of DFP and the nerve agent (S)-sarin by DFPase proceeds along two different reaction pathways: implications for engineering bioscavengers. J PhysChem B, 2014, Vol. 118(17), pp. 4479-4489.
  3. Wales, M.E., Reeves, T.E., Organophosphorus hydrolase as an in vivo catalytic nerve agent bioscavenger. Drug Test Anal, 2012, Vol. 4(3-4), pp. 271-281.
  4. Nachon, F., Brazzolotto, X., Trovaslet, M., Masson, P., Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact, 2013, Vol. 206(3), pp. 536-544.
  5. Chandrasekaran, L., Belinskaya, T., Saxena, A., In search of a catalytic bioscavenger for the prophylaxis of nerve agent toxicity. Chem Biol Interact, 2010, Vol. 187(1), pp. 349-354.
  6. Masson, P., Evolution of and perspectives on therapeutic approaches to nerve agent poisoning. Toxicol Lett, 2011, Vol. 206(1), pp. 5-13.
  7. Melzer, M., Chen, J.C., Heidenreich, A., Koller, M., Kehe, K., Blum, M.M., Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design. J Am Chem Soc, 2009, Vol. 131(47), pp. 17226-17232.
  8. Chemnitius, J.M., Losch, H., Losch, K., Zech, R., Organophosphate detoxicating hydrolases in different vertebrate species. Comp Biochem Physiol C: Comp Pharmacol, 1983, Vol. 76(1), pp. 85-93.
  9. Hoskin, F.C., Kirkish, M.A, Steinmann, K.E., Two enzymes for the detoxication of organophosphorus compounds—sources, similarities, and significance. Fundam Appl Toxicol, 1984, Vol. 4(2), pp. S165-S172.
  10. Hoskin, F.C., Long, R.J., Purification of a DFP-hydrolyzing enzyme from squid head ganglion. Arch Biochem Biophys, 1972, Vol. 150(2), pp. 548-555.
  11. Little, J.S., Broomfield, C.A., Fox-Talbot, M.K., Boucher, L.J., Maclver, B., Lenz, D.E., Partial characterization of an enzyme that hydrolyzes sarin, soman, tabun, and diisopropyl phosphorofluoridate (DFP). Biochem Pharmacol, 1989, Vol. 38(1), pp. 23-29.
  12. Mazur, A., An enzyme in animal tissues capable of hydrolyzing the phosphorus-fluorine bond of alkyl fluorophosphates. J Biol Chem, 1946, Vol. 164(1), pp. 271-289.
  13. Wang, F., Xiao, M., Mu, S., Purification and properties of a diisopropyl‐fluorophosphatase from squid Todarodes pacificus steenstrup. J Biochem Toxicol, 1993, Vol. 8(3), pp. 161-166.
  14. Mirzaei, M., Latifi,A.M., Jafari,R., Improvement of Thermal Stability of DFPase by In silico Methods. J Appl Biotechnol Rep, 2015, Vol. 1(4), pp. 155-159.
  15. Bigley, A.N., Raushel, F.M., Catalytic mechanisms for phosphotriesterases. Biochim Biophys Acta (BBA)-Proteins and Proteomics, 2013, Vol. 1834(1), pp. 443-453.
  16. Katsemi, V., Christian, L., Koepke, J., Lohr, F., Maurer, S., Fritzsch, G., Rüterjans, H., Mutational and structural studies of the diisopropylfluorophosphatase from Loligo vulgaris shed new light on the catalytic mechanism of the enzyme. Biochem, 2005, Vol. 44(25), pp. 9022-9033.
  17. Yeung, D.T., Yeung, D.T., Josse, D., Nicholson, J.D., Khanal, A., McAndrew, C.W., Bahnson, B.J., Lenz, D.E., Cerasoli, D.M., Structure/function analyses of human serum paraoxonase (HuPON1) mutants designed from a DFPase-like homology model. Biochim Biophys Acta (BBA)-Proteins and Proteomics, 2004,Vol. 1702(1), pp. 67-77.
  18. Bird, S.B., Dawson, A., Ollis, D., Enzymes and bioscavengers for prophylaxis and treatment of organophosphate poisoning. FrontBiosci (Scholar edition), 2009, Vol. 2, pp. 209-220.
  19. Draganov, D.I., Paraoxonase 1 (PON1) as a Potential Catalytic Scavenger in the Prophylaxis and Treatment of Organo-phosphate Poisoning. Med Asp Chem Biol Terror, 2005, pp. 227.
  20. Kirby, S.D., Norris, J.R., Richard Smith, J., Bahnson, B.J., Cerasoli, D.M., Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents. Chem Biol Interact, 2013, Vol. 203(1), pp. 181-185.
  21. Tsai, P.C., Fox, N., Bigley, A.N., Harvey, S.P., Barondeau, D.P, Raushel, F.M., Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents. Biochem, 2012, Vol. 51(32), pp. 6463-6475.
  22. Yeung, D.T., Lenz, D.E., Cerasoli, D.M., Human paraoxonase I: A potential bioscavenger of organophosphorus nerve agents, in the paraoxonases: their role in disease development and xenobiotic metabolism. 2008, Springer, pp. 151-170.
  23. Hoskin, F.C., Diisopropylphosphorofluoridate and tabun: enzymatic hydrolysis and nerve function. Science, 1971,Vol. 172(3989), pp. 1243-1245.
  24. Schulz, W., Enzymatishe hydrolyse von hochtoxischen phosphoroganishchen verbindugen. AuftragsnummerT, 1987.
  25. Blum, M.M., Timperley, C.M., Williams, G.R., Thiermann, H., Worek, F., Inhibitory potency against human acetylcholinesterase and enzymatic hydrolysis of fluorogenic nerve agent mimics by human paraoxonase 1 and squid diisopropyl fluorophosphatase. Biochem, 2008, Vol. 47(18), pp. 5216-5224.
  26. Hartleib, J., Rüterjans, H., Insights into the reaction mechanism of the diisopropyl fluorophosphatase from Loligo vulgaris by means of kinetic studies, chemical modification and site-directed mutagenesis. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol, 2001, Vol. 1546(2), pp. 312-324.
  27. Cheng, T.C., Calomiris, J.J., A cloned bacterial enzyme for nerve agent decontamination. Enzyme Microb Technol, 1996,Vol. 18(8),pp. 597-601.
  28. Drevon, G.F., Enzyme immobilization into polymers and coatings, thesis, 2002, University of Pittsburgh.
  29. Lenz, D.E., Yeung, D., Smith, J.R., Sweeney, R.E., Lumley, L.A., Cerasoli, D.M., Stoichiometric and catalytic scavengers as protection against nerve agent toxicity: a mini review. Toxicol, 2007, Vol. 233(1), pp. 31-39.
  30. Masson, P., Rochu, D., Catalytic bioscavengers against toxic esters, an alternative approach for prophylaxis and treatments of poisonings. Acta naturae, 2009, Vol. 1(1), pp. 68-72.
  31. Trovaslet-Leroy, M., Musilova, L., Renault, F., Brazzolotto, X., Misik, J., Novotny, L., Froment, M.T., Gillon, E., Loiodice, M., Verdier, L., Masson, P., Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. Toxicol Lett, 2011, Vol. 206(1), pp. 14-23.
  32. Aharoni, A., Gaidukov, L., Yagur, S., Toker, L., Silman, I., Tawfik, D.S., Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proc Natl Acad Sci USA, 2004, Vol. 101(2), pp. 482-487.
  33. Amitai, G., Gaidukov, L., Adani, R., Yishay, S., Yacov, G., Kushnir, M., Teitlboim, S., Lindenbaum, M., Bel, P., Khersonsky, O., Tawfik, D.S., Meshulam, H., Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase. FEBS J, 2006, Vol. 273(9), pp. 1906-1919.
  34. Goldsmith, M., Ashani, Y., Simo, Y., Ben-David, M., Leader, H., Silman, I., Sussman, J.L., Tawfik, D.S., Evolved stereoselective hydrolases for broad-spectrum G-type nerve agent detoxification. Chem Biol, 2012, Vol. 19(4), pp. 456-466.
  35. Gupta, R.D., Goldsmith, M., Ashani, Y., Simo, Y., Mullokandov, G., Bar, H., Ben-David, M., Leader, H., Margalit, R., Silman, I., Sussman, J.L., Tawfik, D.S., Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat Chem Biol, 2011, Vol. 7(2), pp. 120-125.
  36. Hu, X., Jiang, X., Lenz, D.E., Cerasoli, D.M., Wallqvist, A., In silico analyses of substrate interactions with human serum paraoxonase 1. Proteins: Struct FunctBioinf, 2009, Vol. 75(2), pp. 486-498.
  37. Aharoni, A., Gaidukov, L., Khersonsky, O., McQ-Gould, S., Roodveldt, C., Tawfik, D.S., The evolvability’ of promiscuous protein functions. Nat Genet, 2005, Vol. 37(1), pp. 73-76.
  38. Cleland, W.W., Hengge, A.C., Enzymatic mechanisms ofphosphate and sulfate transfer. Chem Rev, 2006,Vol. 106, pp. 3252-3278.
  39. Chirino, A.J., Ary, M.L., Marshal, S.A., Minimizing the immunogenicityof protein therapeutics. Drug Discov Today, 2004, Vol. 9(2), pp. 82-90
  40. Besio, R., Alleva, S., Forlino, A., Lupi, A., Meneghini, C., Minicozzi, V., Profumo, A., Stellato, F., Tenni, R., Morante S., Identifying the structure of the active sites ofhuman recombinant prolidase. Eur Biophys J, 2010, Vol. 39(6), pp.935-945
  41. Cheng, T.C., Wide-range application of alteromonas prolidase For decontamination of G-type chemical nerve agents. CBMTS III, Spiez, Switzerland, 2000.
  42. Attaway, H., Nelson, J.O.,Baya, A.M.,Voll, M.J., White, W.E.,Grimes, D.J.,Colwell, R.R., Bacterial detoxification of diisopropyl fluorophosphate. Appl Environ Microbiol, 1987, Vol. 53(7), pp. 1685-1689.
  43. Ghanem, E., Raushel, F.M., Detoxification of organophosphate nerve agents by bacterial phosphotriesterase. Toxicol Appl Pharmaco, 2005, Vol. 207(2), pp. 459-470.
  44. Tsai, P.C., Bigley, A., Li Y., Ghanem, E., Cadieux, C.L., Kasten, S.A., Reeves, T.E., Cerasoli, D.M., Raushel, F.M., Stereoselective hydrolysis of organophosphate nerve agents by the bacterial phosphotriesterase. Biochem, 2010, Vol. 49(37), pp. 7978-7987.
  45. An, Q., Lei, Y., Jia, N., Zhang, X., Bai, Y., Yi, J., Chen, R., Xia, A., Yang, J., Wei, S., Cheng, X., Fan, A., Mu, S., Xu, Z., Effect of site-directed PEGylation of trichosanthin on its biological activity, immunogenicity, and pharmacokinetics. Biomol Eng, 2007, Vol. 24(6), pp. 643-649
  46. Novikov, B.N., Grimsley, J.K., Kern, R.J., Wild, J.R.,  Wales, M.E., Improved pharmacokinetics and immunogenicity profile of organophosphorushydrolase by chemical modification with polyethyleneglycol. J  Control Release, 2010, Vol. 146(3), pp. 318-325
  47. Webster.R, Didier, E., Harris, P., Siegel, N., Stadler, J., Tilbury, L., Smith, D., PEGylated proteins: evaluation of their safety in the absenceof definitive metabolism studies. Drug Metab Dispos, 2007, Vol. 35(1), pp. 9-16
  48. Melzer, M., Heidenreich, A., Dorandeu, F., Gäb, J., Kehe, K., Thiermann, H., Letzel, T., Blum, M.M., In vitro and in vivo efficacy of PEGylated diisopropyl fluorophosphatase (DFPase). Drug test Anal, 2012, Vol. 4(3-4), pp. 262-270.
  49. Blum, M.M., Richardt,A., Hydrolytic enzymes for chemical warfare agent decontamination. Decontamination of warfare agents: enzymatic methods for the removal of B/C weapons, 2008,  (eds A. Richardt and M.-M. Blum), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 135-162.