Fabrication of an Amperometric Glucose Biosensor Based on a Prussian Blue/Carbon Nanotube/Ionic Liquid Modified Glassy Carbon Electrode

Document Type : Original Article


1 Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran

2 Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

3 Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran

4 Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran


An amperometric glucose biosensor was developed based on synergistic contributions of prussian blue (PB) and a bucky gel (BG) consisting of carbon nanotubes (CNTs) and ionic liquid (IL). The PB nanoparticles were first deposited onto the surface of a BG modified glassy carbon (GC) electrode (BG/GC). Then, the Ni2+ ions were electrochemically inserted into the PB lattice to improve its stability at physiological pH. Afterwards, Glucose oxidase (GOx) was immobilized on the BG/GC electrode using a cross-linking method. Amperometric measurements of glucose were performed at −0.05 V vs. Ag/AgCl in 0.05 M phosphate buffer solution at pH 7.4. The glucose biosensor exhibited a sensitivity of 45.03 µA/(mM.cm2) with a detection limit of 5×10-7 M. The amperometric response was linear in the range of 5×10-7 to 8.3×10−4 M.


  1. Huang, J., Dong, Zh., Li, Y., Li, J., Wang, J., Yang, H., Li, Sh., Guo, Sh., Jin, J., Li, R., High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study. Sens Actuators B Chem, 2013, Vol. 182, pp. 618–624.
  2. Senthamizhan, A., Balusamy, B., Uyar, T., Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem, 2016, Vol. 408, pp. 1285–1306.
  3. Wang, J., Glucose biosensors: 40 years of advances and challenges. Electroanal, 2001, Vol. 13, pp. 983–988.
  4. Newman, J., Turner, A. P., Home blood glucose biosensors - a commercial perspective. Biosens Bioelectron, 2005, Vol. 20, pp. 2435–2453.
  5. Mahbubur Rahman, M., Saleh Ahammad, A. J., Jin, J.H., Ahn, S. J., Lee, J.J., A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors, 2010, Vol. 10, pp. 4855–4886.
  6. Chen, Ch., Xie, Q., Yang, D., Xiao, H., Fu, Y., Tana, Y., Yao, Sh., Recent advances in electrochemical glucose biosensors. RSC Adv, 2013, Vol. 3, pp. 4473–4491.
  7. Ding, S., Schumacher, M., Sensor monitoring of physical activity to improve glucose management in diabetic patients: a review. Sensors, 2016, Vol. 16, pp. 589-602.
  8. Chen, H., Xi, F., Gao, X., Chen, Z., Lin, X., Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction. Anal Biochem, 2010, Vol. 403, pp. 36–42.
  9. Qiu, J. D., Zhou, W. M., Guo, J., Wang, R., Liang, R. P., Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem, 2009, Vol. 385, pp. 264–269.
  10. Anuar, N. F., Misran, H., Manap, A., Othman, S. Z., Review on immobilization of nanoparticles for fabrication of glucose biosensor. Appl Mech Mater, 2015, Vol., pp. 720–724.
  11. Xue, M. H., Xu, Q., Zhou, M., Zhu, J. J., In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on prussian blue modified electrode for high-sensitivity glucose detection. Electrochem commun, 2006, Vol. 8, pp. 1468–1474.
  12. Ricci, F., Palleschi, G., Sensor and biosensor preparation, optimisation and applications of prussian blue modified electrodes. Biosens Bioelectron, 2005, Vol. 21, pp. 389–407.
  13. Karyakin, A. A., Gitelmacher, O. V., Karyakina, E. E., A high-sensitive glucose amperometric biosensor based on prussian blue modified electrodes. Anal Lett,1994, Vol. 27, pp. 2861–2869.
  14. Chiu, J.-Y., Yu, C.-M., Yen, M.-J., Chen, L.-C., Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene) /prussian blue bilayer and multi-walled carbon nanotubes. Biosens Bioelectron,2009, Vol. 24, pp. 2015–2020.
  15. Zhang, M., Hou, C., Halder, A., Ulstrup, J., Chi, Q., Interlocked graphene-prussian blue hybrid composites enable multifunctional electrochemical applications. Biosens Bioelectron, 2017, Vol. 89, pp. 570-577.
  16. Lin, L., Huang, X., Wang, L., Tang, A., “Synthesis, characterization and the electrocatalytic application of prussian blue/titanate nanotubes nanocomposite. Solid State Sci, 2010, Vol. 12, pp. 1764–1769.
  17. Li, Zh., Chen, J., Li, W., Chen, K., Nie, L., Yao, S., Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes. J Electroanal Chem,2007, Vol. 603, pp. 59–66.
  18. Arvinte, A., Rotariu, L., Bala, C., Gurban, A. M., Synergistic effect of mediator-carbon nanotube composites for dehydrogenases and peroxidases based biosensors. Bioelectrochem, 2009, Vol. 76, pp. 107–114.
  19. Saleh Ahammad, A.J., Lee, J.J., Rahman, M. A., Electrochemical sensors based on carbon nanotubes. Sensors, 2009, Vol. 9, pp. 2289–2319.
  20. Kumar Vashist, S., Zheng, D., Al-Rubeaan, K., Luong, J. H. T., Sheu, F.-S., Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv, 2011, Vol. 29, pp. 169–188.
  21. Adekunle, A. S., Farah, A. M., Pillay, J., Ozoemena, K. I., Mamba, B. B., Agboola, B. O., Electrocatalytic properties of prussian blue nanoparticles supported on poly (m-amino benzene sulphonic acid)-functionalized single-walled carbon nanotubes towards the detection of dopamine. Colloid Surface B, 2012, Vol. 95, pp. 186–194.
  22. Fu, G., Dai, Z., Efficient immobilization of glucose oxidase by in situ photo-cross-linking for glucose biosensing. Talanta, 2012, Vol. 97, pp. 438–444.
  23. Wei, D., Ivaska, A., Applications of ionic liquids in electrochemical sensors. Anal Chim Acta, 2008, Vol. 607, pp. 126–135.
  24. Haghighi, B., Nikzad, R., Prussian blue modified carbon ionic liquid electrode: electrochemical characterization and its application for hydrogen peroxide and glucose measurements. Electroanal, 2009, Vol. 21, pp. 1862–1868.
  25. Opallo, M., Lesniewski, A., A review on electrodes modified with ionic liquids. J Electroanal Chem, 2011, Vol. 656, pp. 2–16.
  26. Zhang, L., Song, Z., Zhang, Q., Jia, X., Zhang, H., Xin, S., Enhancement of the electrochemical performance of prussian blue modified electrode via ionic liquid treatment. Electroanal, 2009, Vol. 21, pp. 1835–1841.
  27. Li, F., Shan, C., Bu, X., Shen, Y., Yang, G., Niu, L., Fabrication and electrochemical characterization of electrostatic assembly of polyelectrolyte-functionalized ionic liquid and prussian blue ultrathin films. J Electroanal Chem, 2008, Vol. 616, pp. 1–6.
  28. Tunckol, M., Durand, J., Serp, P., Carbon nanomaterial-ionic liquid hybrids. Carbon, 2012, Vol. 50, pp. 4303–4334.
  29. Ali, A., Abdulhakim, A. M., Hayyan, M., Juneidi, I., Ali, M., Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review. Electrochim Acta, 2016, Vol. 193, pp. 321–343.
  30. Keihan, A. H., Sajjadi, S., Improvement of the electrochemical and electrocatalytic behavior of prussian blue/carbon nanotubes composite via ionic liquid treatment. Electrochim Acta, 2013, Vol. 113, pp. 803–809.
  31. Zhang, Y., Guo, G., Zhao, F., Mo, Z., Xiao, F. Zeng, B., A novel glucose biosensor based on glucose oxidase immobilized on AuPt nanoparticle – carbon Nanotube – ionic liquid hybrid coated electrode. Electroanal, 2010, Vol. 22, pp. 223–228.
  32. Du, P., Liu, S., Wu, P., Cai, C., Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes. Electrochim Acta, 2007, Vol. 52, pp. 6534–6547.
  33. Iveković, D., Trbić, H. V., Peter, R., Petravić, M., Čeh, M., Pihlar, B., Enhancement of stability of prussian blue thin films by electrochemical insertion of Ni2+ ions: a stable electrocatalytic sensing of H2O2 in mild alkaline media. Electrochim Acta, 2012, Vol. 78, pp. 452–458.