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Abstract 

 
Introduction 
In recent years, using of immobilized cells is developed for 
various applications. Some of these applications are  
removing organic pollutants from contaminated  
ecosystems or producing of useful products such as  
ethanol [1-3] and many aerobic fungi have been immobi-
lized for production of extracellular enzymes [4, 5]. Cell 
immobilization has several advantages including achieving 
to higher cell densities and increasing productivity respect 
to conventional suspension culture. Immobilization of 
mammalian cells within support can protect cells from 
destruction due to shear forces and simplify product  
separation and purification [6-8]. Despite of mentioned 
benefits for cells immobilization, there are disadvantages 
such as limitation of available space in the support for  
microorganisms growth [9]. Products and substrates dif-
fuse from local environment within the biofilm layer and  
structure of biofilm is related to the motion of surface cells 
and existence of rate-limiting substrate [10, 11]. As  
regards to entrapment of cells in supports such as  
ca-alginatehas been performed for degradation of toxic 
substance since 1975, but diffusion limitations decreased 
productivity and environmental condition controlling 
[12-14] nitrate and nitrite diffusion into the spherical  
immobilized cell are studied for groundwater  
denitrification and quasi-steady-state model formulated for 
this reaction [15]. Immobilization of two morphologically 
different strains of anaerobic chytridin Ca-alginathas been 
studied for cellulolytic enzymes production and immobili-
zation conditions have been optimized in order to fungal 
biomass increasing [16]. 

Experimental studies have showed that the biomass  
concentration in an immobilized cell support aggregate as 
non-uniform due to accumulation of biomass in the outer 
core of the support particle and this non-uniform  
distribution is affected on biological properties such as cell 
specific growth rate and effectiveness diffusion coefficient 
of the substrates and products [17-19]. The mathematical 
model have been derived based on uniform diffusivity in 
carrageen an gel beads and the effects of immobilized cells 
growing conditions upon biomass production are studied 
in support particles [20]. E. coli microorganism has been 
immobilized in agar membrane and substrate diffusion-
reaction and cell reproduction has been modeled. The  
results showed that product inhibition was more effective 
on cell reproduction than substrate limitation [21].  
Validation of a dynamic model has been studied for  
immobilized cells growth in kappa-carrageenan gel beads 
and simultaneous oxygen, nitrite, nitrate and ammonia 
conversion [22]. Macroscopic diffusion in immobilized 
cell supportcan be described by an effective diffusion  
coefficient (De) and this coefficient depends on the  
molecules diffusivity within the support phase (D0) and the 
heterogeneous milieu of cells (Dc) [13, 23, 24]. There are 
several methods for evaluating molecular diffusivities in 
immobilized microorganism systems such as bead  
methods, diffusion chambers and holographic laser  
interferometry [25-27]. Many of nonlinear equations in the 
transport phenomena problems should be solved by  
analytical and numerical methods. Ozisik introduced some 
simple and accurate analytical techniques for solving non-
linear differential equations called the Weighted Residuals 
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Methods (WRMs). Collocation, Galerkin and Least Square 
Method (LSM) are examples of the WRMs [28, 29]. 
The main motivation of this paper is to solve mass balance 
one-dimensional differential equation by using of Least 
Square Method (LSM) and demonstrating of substrate 
concentration profile in diverse conditions. Effects of  
various parameters including effective diffusion  
coefficient, maximum specific growth rate and the type of 
limiting substrate are described on substrate profile in  
immobilized cells-support aggregate. With respect to using 
of analytical methods for biochemical differential  
equations dissolution remains unnoticed, the main  
advantage of this study is using of LSM which does not 
need any linearization or perturbation, and comparing of 
results with numerical solution. 
 
Materials and Methods 
Problem description and governing equation  
Cell entrapment in a porous matrix protects them from the 
shear stress outside of the support particles. Physical  
entrapment of microorganisms inside a polymeric matrix 
(gel) is one of the most widely used methods for cell  
immobilization. The gels commonly used for cell  
entrapment are polymers such as K-carrageenan, agar, 
alginate [30, 31]. When cells are immobilized within  
suitable support, concentration of limitation substrate 
change in diverse layers. In this paper we assumed that 
Nitrosomonas europaea and Nitrobacter agilis cells are 
entrapped within spherical beads of k-carrageenan and 
microbial flocare formed. So, substrate should diffuse in 
cells aggregation to be used by inner layers cells. Parame-
ters which include effective diffusion coefficient (De), 
maximum specific grow rate (µm) and limiting substrates 
type are effective on substrate concentration profile in  
immobilized Nitrosomonas europaea and Nitrobacter  
agilis cells and this study has tried to illustrate these  
parameters effects. 
The following assumptions have been used for this model 
derivation: 
1. Since the rate of biofilm thickness increasing is much 
slower than the rate of substrate consumption, the system 
conditions can be assumed to be at quasi-steady state for 
little periods of time. So the simplest case is to assume that 
the immobilized cell aggregation is at quasi-steady state 
and all of the cells inside the biofilm are in the same  
physiological state and average kinetic constant are used 
for the biotic phase. 
2. Only immobilized cells convert substrate to product.  
3. Support is considered as uniform sphere and cells are 
uniformly distributed within spherical support particle. 
4. The external mass transfer limitation is negligible for 
the transport of the substrate. 
On the basis of these assumptions, the governing equation 
of substrate diffusion rate within immobilized cell layer 
has been written based on following nonlinear differential 
mass balance [32]: 
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Where  S is the dimensionless substrate concentration, S0 is 
the initial substrate concentration, r is the dimensionless 
radius, Ks is the saturation constant, µm is maximum  
specific growth rate, X is the biomass concentration, Ys is 
the substrate yield and De is the effectiveness diffusion 
coefficient.  
 
The appropriate boundary conditions are: 

(3)  
1r  :   1S   

(4)  
0r  : 0

dS

dr
  

The cells and substrates properties of the immobilized cells 
are given in Table 1. Generally, these presented numerical 
values are used for clear explain of various parameters  
effect on substrate profile [22].  
Analytical solution 
There is an approximation method to solve ordinary  
differential equations called Least Square Method (LSM).  
Consider the following differential equation: 

(5) 
    D u x p x

 
Let consider the function u an approximation of u , 
which is a linear combination of trial functions: 
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By substituting into the differential equation, an error or 
residual will exist: 

(7)        0R x D u x p x  

 
The notion in LSM is to force the residual to zero, so: 

(8) 
    0 , 1, 2 , ...,i

X

R x W X d x i n 
 

Where w(x) is weight function and n is the number of 
unknown constants ci in ũ. The result is a system of n  
algebraic equations for obtaining the unknown constants 
ci. If the continuous summation of all the squared  
residuals is minimized, the rationale behind the LSM’s 
name can be seen: 
 

(9) 
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For obtaining the minimum of the function S, the  
derivatives of S with respect to all constants must be zero.  

(10) 
 2 0 , 1, 2 , ... ,

i iX
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By comparing Eqs  (6) and  (10), the weight functions are  

(11)  2i
i

R
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c


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  

Some advantages of LSM comparing to other methods are 
presented in [33, 34]. Here, we apply the LSM on the 
present problem. We should first choose a trial function. 
Because trial function must satisfy the boundary  
conditions (Eq. (3) and (4)), so it will be assumed as, 

(12)           2 3 4 6
1 2 3 51 1 1 1 1S r c r c r c r c r        

 

By combining the above equation and Eq.  (1),  
residual function will be found and via substituting the 
residual function into Eq.  (10), a system of equation with 
five equations will appear and by solving this set of equa-
tions, coefficients

1 5, ...,c c will be obtained. The analytical 

solution of the problem is in the following form for 
1, 1   : 

 
S(r) = 0.9191+0.0798r2 + 0.0r3 + 0.0011r4 + 0.000001r5 – 
0.0001r6                                                                                                        

                                                                                                                                         (13) 
 
To validate our solution and find the accuracy of the  
method, we compared the results of the LSM and numeri-
cal solution in the Table 2. The numerical solution is  
performed by using the algebra package Maple 15.0, to 
solve the present case. The package uses a fourth–fifth 
order Runge-Kutta–Fehlberg procedure for solving  
nonlinear boundary value problem (BVP). The algorithm is 
proved to be precise and accurate in solving a wide range 
of mathematical and engineering problems. As we can see 
in Table 2, the results of LSM have an excellent accuracy 
and order of the error is about 10-6 to 10-5. 
 
Result and Discussion 
In this study Least Square Method is applied to obtain an 
explicit analytical solution of the substrate diffusion  
equation in an immobilized cell-support aggregate. In the  
following analysis, all parameters are kept constant except 
for one and the effect of this parameter is studied on the 
substrate concentration profile. 
The effective diffusion coefficient (De) is affected by  
various parameters such as cell concentration (X) [23] for 
this reason constant values of cell concentrations are  
applied for demonstration of substrates concentration pro-
files in Figures 1-10. 
Effects of the effective diffusion coefficients (ܦ௘ேைଶ) on 
concentration profile of NO2 as limiting substrate are 
showed in Figure 1 for Nitrobacter agilis when X=1 

kg/m3.Substrate concentration reduces with approaching 
to the center of spherical bacterial aggregation. Increasing 
of effective diffusion coefficient reduces substrate profile 
gradient since substrate can diffuse within cells easily  
(Fig. 1). 
 

 

 
Figure 1. Effect of the Dୣ୒୓ଶ on NO2 concentration profile for 
immobilized Nitrobacter agilis. 
 
 
Considering the fact that saturation constant (Ks) is related 
to the type of substrate and microorganism, O2 profile is 
demonstrated in Figure 2 for Nitrobacter agilis when X=1 
kg/m3. With respect to 2 2O NO

e eD D in similar conditions, but 

O2 profile gradient is more than NO2since ܭ௦
ேைଶ,ே௕>ܭ௦

ைଶ,ே௕ 
(Table 1).  
 

 
Table 1. The numerical value of model parameters. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Therefore, as regards to De and Ks have inverse effect on 
substrate profile gradient, but Ks has more effect than De in 
this conditions. Increasing diffusion coefficient of O2  
reduces difference of substrate concentration between the 
bulk medium and the center of immobilized cells support. 
Effects of 4N H

eD as nitrogen source nutrient on NH4  

concentration profile has been studied in Figure 3 for  
Nitrosomonas europaea when X=1 kg/m3.  
It's obvious that increasing of 4N H

eD makes substrate  
diffusion increases within immobilized cell support  
particle aggregate. O2 concentration profile is  
demonstrated in Figure 4 for Nitrosomonas europaea (X=1 
kg/m3) and responds are similar to Figure 2. 
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Table 2. Comparison of the LSM results and numerical solution 
for 1 , 1   . 
 

 

 

 

 
Figure 2. Effect of the Dୣ୓ଶ on O2 concentration profile for im-
mobilized Nitrobacter agilis. 
 

 

 
Figure 3. Effect of the Dୣ୒ୌସ on NH4 concentration profile  
for immobilized Nitrosomonas europaea. 
 
Cell specific growth rate constant is a way of measuring 
how fast the cells are dividing in a culture. In Figure 5a 
and b, effects of µm have been show on substrate concen-
tration profile for Nitrobacter agilis. It's obvious that with 
increasing maximum specific growth rate, substrate  
consumption increases and thus gradient of limiting sub-
strate concentration profile (NO2 and O2) increases (X=1 
kg/m3). Effects of specific growth rate have been studied 
on substrate diffusion for Nitrosomonas europaea in  
Figure 6a and b for X=1 kg/m3. This figure confirms our  

appointment about effects of maximum specific growth 
rate on substrate concentration profile. 
 

 

 
Figure 4. Effect of the Dୣ୓ଶ on O2 concentration profile for  
immobilized Nitrosomonas europaea. 
 

 

 
Figure 5a. Effect of Nitrobacter agilis specific growth rate (µm) 
on NO2 concentration profile. 
 

 

 
Figure 5b. Effect of Nitrobacter agilis specific growth rate (µm) 
on O2 concentration profile. 
 

 

Figure 6a. Effect of Nitrosomonas europaea specific growth rate 
(µm) on NH4 concentration profile 
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but reducing of microorganism specific growth rate  
increases substrate profile slope within spherical microbial 
floc. 
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