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Abstract 

 

Introduction 
Organophosphate pesticides were recognized for the first 
time in 1850, when Moshchenine synthesized tetraethyl 
pyrophosphate (TEPP). Some years later, the initial 
synthesis of organophosphorus compounds including P-F 
bond was introduced by Long and Roger Vaughan. Gross 
firstly stated the performance of organophosphate in 1952 
as an acetylcholine esterase (AChE) inactivator [1]. In the 
end of World War II, organophosphate compounds were 
widely used as insecticides and additives in plastic and oil 
industry [2]. Excessive use of organophosphates causes the 
pollution of soil and water in ecosystems around the world 
[3]. Although these compounds are degraded, they have 
high toxicity to mammals, and other animals and also for 
invertebrates and vertebrates [4]. The poisoning effect of 
these compounds takes place in terrorist attacks, the 
leakage to the environment and handling by workers and 
farmers. These compounds have acute toxicity for a wide 
range of disorders to nervous system and muscles [5]. 
Approximately three million cases of poisoning and three 
hundred thousand deaths in the world are caused by 
organophosphorus compounds [6]. This article briefly 
studies the influences of OPs on human life and provides 
some guidelines to detoxify these compounds in 
ecosystem. Organophosphate compounds are classified in 
two main categories: 
I. Axons: Axons have a P=O double bond and include 
phosphotriestrases and phosphotulates. 
 Phosphotuesters: The triester compounds derived from 

phosphoric acid which are considered as standard type 

of organophosphate pesticides, and are very active, in 
which all four phosphorus are bond to oxygen. 

 Phosphotiolats: In addition to a P=O double bond, it 
contains a single P-S bond.  

This category is more toxic, and commonly used as plant 
or soil systemic insecticides. 
II. Thions: This group contains a P=S double bond and 
includes phosphorothionate and phosphorothionothiate. 
 Phosphorothionates: This subgroup contains a P=S 

double bond and three O-P bonds, such as parathion, 
diazinon and chlorpyrifos. 

 Phosphorothionothiate: This subgroup has a P=S double 
bond with a P-S single bound attached to the central 
phosphorus. 

 Organophosphorus amides: This subgroup is derived 
from Phosphoric acid, such as phosphor amides and 
phosphoramidothionate. 

There are also some other structures derived from 
phosphonats (P-CN), phosphofolridats (P-F) and 
phosphorocyanidats (P-CN)  [7]. 
 
 
 
 
 
 
 
 
 

 
Figure 1. The overall structure of organophosphorus compounds 

[7]. 

Daily, organophosphorus compounds (OPs) in human life, has found wide  
applications. Although OPs have biodegradability potential, they induce clinical 
problems in humans and other organism. Different methods are used to detoxify 
these compounds. In the meantime, biodegradation is preferred as a compatible 
way to the environment since it produces less toxic compounds. Enzymes capable 
to degrade the OPs are of the most important items in the biodegradation. Genetic 
manipulation involved in the production of these enzymes has been employed in 
bacteria, and finally, is used for the mass production of recombinant  
microorganisms. In this paper, the role of organophosphates on human life and the 
ways to destroy toxic organophosphates are studied. 
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Figure 2. Chemical structure of organophosphorus compounds 
axon groups [7]. 

 
 

 

 
Figure 3. Chemical structure of organophosphorus compounds 
[6, 7].  
 
The effect of organophosphate compounds on humans 
Organophosphates can affect through oral, inhalation and 
also reacting with tyrosine residue present in the keratin of 
skin epithelium, and act as one of the most common  
poisoning factors on multiple biological systems [8]. 
Nervous system disorders 
Nervous system is one of the major biological systems in 
animals that are influenced by, with various methods, 
mainly through the inhibition of cholinesterase [9]. Choli-
nesterases in vertebrates are divided into two main groups: 
Acetylcholinesterase (AChE) and pseudocholinesterase or 
Butyrylcholinesterase (BChE). This enzyme synthesized 
by liver is found in plasma, pancreas, brain and heart, and 
is a serine hydrolase capable of hydrolyzing esters such as 
acetylcholine, succinylcholine and miuvacoriuom, with a 
serum half-life of 8 to 12 days [10]. Cholinesterases are 
divided based on catalytic properties, substrate features 
and inhibition by specific inhibitors [11-14]. Acetyl  
cholinesterase is a serine hydrolase hydrolyzing the  
acetylcholine neurotransmitter at cholinergic synapses to 
terminate the neuronal signaling [15]. OPs covalently bond 
to the hydroxyl group of serine phosphorylation, inhibit 
the enzyme’s active site and cause the accumulation of 
acetylcholine at synapses [1]. 
The inhibition of cholinergic muscarinic receptors pathway 
(mAChR) is the most important result caused by  
acetylcholinesterase inhibition. Cholinergic activities in 
autonomic nervous system are those that deal with general 
aspects of life in the brain such as various types of  
behaviors and functions including hunger, thirst, sweating, 
breathing, anger, communication and understanding. 
MAChR is also a kind of acetylcholine receptor  
responding to muscarin. AChE inhibition in MAChR leads 

to the accumulation of acetylcholine and eventually con-
vulsion. High stimulation of mAChR disrupts the balance 
of glutamatergic and GABAergic activities and changes 
the concentration of calcium ions both inside and outside 
of the cells [1, 16-18].  
The changes on calcium concentration affect on some  
other conditions such as ion concentration, hyper-
osmolarity and protein functions in the endoplasmic  
reticulum membrane [19-21]. This indicates that exposure 
to high levels of OPa harmfully causes prolonged effects 
on brain’s structure and function [22]. Secondary damages 
to the nerves caused by OPs are memory loss, inability to 
concentrate, speech and behavioral problems [23].  
Memory loss is usually occurs in 2-3 weeks after exposure. 
OPa cause a change on the activity of Ca²+ dependent 
calmodulin-kinase (CaMK2), which is responsible for the 
phosphorylation of Cytoskeletal proteins, alpha, beta  
tubulin and microtubules associated with triplet proteins 
and neurofilament (NF) involved in the pathogenicity of 
Ops [24, 25]. 

 
 

Figure 4. Inhibition of AChE active site [10]. 

 
Impairment of reproductive  
Spermatogenesis and gametogenesis are regulated by the 
endocrine glands [26]. Some pesticides or their metabo-
lites, such as DDT or parathyroid, act as an endocrine-
disruption agent in animals or humans [27, 28]. The de-
crease in sperm concentration is the most common effect 
[29]. In a research on greenhouse workers, as an occupa-
tion involved with OPs, an increased level of dialkylphos-
phate led to a lower level of follicle-stimulating hormone 
(FSH), increased amount of testosterone and decreased 
level of the hormone inhibinB [30]. Another report showed 
that much contact with parathyroid pesticides is associated 
with increased levels of FSH and luteinizing hormone 
(LH) and also reduced levels of inhibinB [31]. High 
amount of organochlorine is also associated with changes 
in hormonal levels [32]. All these cases indicate that OPs 
effect on human reproductive system. 
Impact on biological macromolecules 
OPs lead to the formation of oxidized material (ROS) [33, 
34]. The concentration of oxidized material can be  
increased considerably by different environmental toxins 
from industry, agriculture, accidental infections and  
smoking. Lipids, proteins and nucleic acids are sensitive to 
ROS. The first defense of the body against the effects of 
ROS is oxidant enzymes [35]. OPs cause oxidative stress 
which leads to the loss of mitochondrial energy (ATP), the 
induction of proteolytic enzymes and DNA fragmentation 
for apoptosis [36]. Insecticides also increase chromosomal 
abnormalities. Chlorpyrifos, MPT and MLT increase an 
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antioxidant enzymes including catalase activity (CAT) 
superoxide (SOP) and glutathione peroxidase in rat tissues 
and also cytochrome P450 [35]. Cytochrome P450 oxidase 
system is an important component of performance in  
relation to the metabolism of several substrates including 
drugs, xenopiotcs, environmental pollutants, and many 
other compounds. Cytochrome P450 oxidation changes 
phosphorotioate compounds to axon through oxidative 
disulforation [35-37]. Other vital systems such as the  
immune system [38], pancreas [39], liver [40], blood [41] 
and the reproductive system [42] are affected by organo-
phosphate compounds.  
The use of organophosphate insecticides can cause  
poisoning and certain related symptoms including meiosis, 
increased urination, diarrhea, excessive sweating, tears and 
saliva [43]. OPs have certain genotoxic, clastogenic and 
AlkilationL properties, so they have potential to cause  
mutations and clastogenic [44, 45]. OPs have multiple 
effects on enzymatic pathways contributing in the  
development of diabetes, such as cholinergic pathway that 
enables adrenergic receptors and induces Hyprglaysmy 
and finally gluconeogenesis, or the activation of the  
glucocorticoid receptor that activates the gluconeogenesis 
in liver, and also causes the disruption of pancreatic  
endocrine by oxidative stress. 
The effect of organophosphate compounds on the  
environment 
Many toxic compounds can persist in the environment 
with high resistance; therefore, they can influence the  
different populations of microorganisms and Macroorgani-
sams [46]. Most of the reports are focused on the effects of 
OPs on protozoa (protists) in soil, which has a  high level 
of reproduction as a part of the soil microorganisms and 
are very good sample for the measurement of toxic and 
biological assays [47]. OPs such as chlorpyrifos effect on 
reproduction, survival and fetal development in both  
vertebrates and invertebrates, leading to a decrease in the 
number of organisms in the environment [48-53].  
 

 

 
 
Figure 5. The proposal for the effects of organophosphates on 
hemostasis changes in glucose [53]. 

According to the communication between different  
organisms, if one of the creatures be infected by OPs, other 
creatures associated with it are also involved. For example, 
if the air or water or soil be contaminated with OPs, all 
organisms subjected to them will be infected. Eventually, 
the role of OPs on human life becomes clearer considering 
the chain of communication between these creatures and 
human [54]. 
Analysis of organophosphorus compounds 
 

Biodegradation 
Due to the effects of OPs, a major problem world widely, 
there is an urgent need to develop affordable and reliable 
approach to quickly disinfect the pollution caused by them 
in the environment [55-57]. Guidelines like the combus-
tion and buried deep in the remote areas are of the earliest 
and most convenient methods to detoxify OPs. These  
methods release toxic gases into the atmosphere or leach 
the pesticides into the ground and surface water [58, 59]. 
Nonbiological methods are chemical degradation through 
photolysis reactions, hydrolysis, and oxidation and  
redoxion catalysis.  
Formulated factors can act as a buffer or inhibitors in h 
drolysis or dehalogenation. Some pesticides have ability to 
be hydrolyzed in alkaline water and soil [60]. Optical 
analysis methodology, a combination of UV light with 
semiconductor solutions, is also a common method to 
dgrade OPs, the best example is combining semiconductor 
titanium dioxide (TiO2) with UV light. Compounds such 
as, UV-H2O2, UV-TiO2 and UV-H2O2-TiO2 are used for 
optical degradation of some OPs such as Diazinon [61-63]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 6. A view of the effect of organophosphorus compounds 
on the environment and on human and animal life [62]. 
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Biodegradation of organophosphorus compounds 
Most pesticides, such as organophosphate, carbamate, or 
pyrethroid are bio-degradable. These compounds  
hydrolyze spontaneously (especially in high pH) and by 
enzymes to less toxic materials [64, 65].  
The biodegradation of pesticides by microbial enzymes in 
the soil is a key mechanism in preventing the accumulation 
of these chemicals in the environment. For example, 
several species of bacteria possessing the ability to 
hydrolyze pesticides, have been isolated from wastewater 
plants capable of hydrolyzing some organophosphorus 
compounds (Chlorpyrifos, Diazinon).  
 
 

 
 

Figure 7. Decomposition of Diazinon [64]. 

 
Researchers have shown that a continual application of 
insecticides leads to an increased biodegradation rate, 
reduced half-life and ultimately the effectiveness [66-68]. 
Rapid degradation of pesticides effects remarkably on pest 
control, therefore, it can be very impressive and important 
[69]. For example, in an experiment using EPTC to control 
weed, the first two annual programs were reported well, 
however, the third application showed approximately 75% 
reduction [70]. The use of microorganisms for the 
biodegradation of certain chemicals may be affected by 
several things, such as: 
1- An increase in the biodegradation activity of 
microorganisms in accordance with the specific gene 
expression. 
2- An increase in the number of degrading microorganisms 
due to microbial growth or lateral gene transfer 
3- The migration of some other degrading microorganisms 
to the desired location 
4- The evolution of new essential enzymes to consume 
OPs as a source of chemical energy [71].  
Many reports indicate the importance role of soil, 
microbial community and gene pool in the degradation rate 
of pesticides. The effectiveness will be lost in the absence 
of specific genes, unless in case of gene presence or 
migrating new microbes possessing the desired genes to 
the desired location [72-76]. Recently many detoxification 

strategies using engineered microorganisms capable of 
doing a lot of analysts are developed. Several continuous 
efforts are required to improve the detoxification process 
by the overexpression of hydrolyzing enzymes. 
enzymes capable degradation of organophosphorus 
compounds 
Organophosphates toxicity is related to the phosphoryl 
center, which can bind and inactivate cholinesterase 
enzymes and other biological enzymes. In phosphotriesters 
all four atoms bound to the phosphate are oxygen, 
although, in other subclasses it has been replaced with 
other atoms such as S, F, C, or N. The toxicity of OPs is 
reduced significantly by chemical and enzymatic 
hydrolysis. Pesticides-degrading enzymes are highly 
regarded. Based on International Union of Biochemistry, 
these enzymes are classified in the hydrolase subtypes. 
Esterases are classified in subgroup 1 of hydrolase. 
Various types of esterases are named based on a variety of 
ester bonds. 
Carboxyl esterases (CbEs) 
Carboxyl esterases are included within subgroup 3.1.1 of 
the International Union of biochemistry and have ability to 
hydrolyze carboxylesters. In 1953, Norman Aldridge 
classified esterases by the reaction with OPs to α and β 
subgroups.  The subgroup unable to inhibit OPs is named α 
esterase, and the subgroup able to inhibit OPs is named β 
esterase [77]. OPs and carbamates show the most toxic 
effects by phosphorylation (or Karbamylation) of serine 
group in the active site of choline esterase. 
Phosphorylation Or Karbamylation of acetylcholinesterase 
and neurological esterase is associated with their toxic 
effects. However, the inhibition does not cause major 
effects in mammals (particularly in the liver and serum). 
The β esterase (AChE) may be defined as a detoxification 
enzyme of OPs and Karbamats. Each molecule of CbE is 
able to detoxify one pesticide molecule prior to creating 
any sign in the nervous system. It is very suitable 
detoxification. The OPs resistance in some beetles  and 
birds  is associated with the overexpression of β esterases, 
which inhibits the phosphorylation of the active centers in 
pesticides to make them inefficient [78, 79]. 
 

 
 
Figure 8. Organophosphates, with phosphorylation of the car-
boxyl esterase enzyme prevents the activation of the enzyme with 
water and enzyme activity recovery becomes impossible [77]. 

I. phosphatriesterase (PTEs) 
Phosphatriesterases are major part of Organophosphates 
and include a central phosphate ester with three bonds 
[80, 81]. Phosphatriesterase enzymes are capable of 
hydrolyzing these compounds and are identified in various 
tissues in mammals, fish, birds, mollusks and bacteria [82]. 
These enzymes break the bonds between the phosphorus 
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atom and release groups down and produce some products 
with higher polarity, therefore, they would not be 
accumulated in fatty tissue and thus will easily be excreted 
from body by urine. Since this reaction inhibits the 
phosphorylation ability and reduces their toxicity, the 
hydrolysis by PTEs is considered as a detoxification 
reaction. One molecule of carboxyl esterase can hydrolase 
only one molecule of organophosphate, while 
phosphotriesterase could hydrolyze several 
organophosphates molecules, therefore, OPs detoxification 
by PTEs is much better. PTEs are usually named according 
to the substrate specificity [82, 83].  
 
 

 
 
 
Figure 9. Some reactions catalyzed by Phosphotriesterase known 
[9]. 

Orghanophosphoruse hydrolase ((OPH (EC.3.1.8.1) 
 

The gene encoding Orghanophosphoruse hydrolase (OPH, 
EC 3.1.8.1) was found in two strains from two different 
families with similar sequences, Flavobacterum sp. 
(ATCC 27551) and Pseudomonas diminuta MG. OPH has 
a strong hydrolysis for a range of insecticides such as 
phosphothioesters, and phosphorofluoridates including 
DFP and chemical weapons such as Sarin and Soman, and 
is the only enzyme that is able to hydrolyze P-S bond in 
OPs. Various forms of the enzymes associated with 
various divalent ions in the enzyme's structure illustrate 
different ability to hydrolyze OPs. For example, the 
activity of OPH (CO2+) is approximately five to twenty 
times more than the activity of OPH (Zn2+). This 
difference is due to the type of catalyst metal [84]. 
 
Organ phosphorus Anhydrides acid (3.1.8.2) (OPAA) 
 

In 1946, DFPase was detected by Abraham Mazur in 
rabbit tissues as a DFP-hydrolyzing enzyme. It was then 
purified from Alteromonas sp, JD6.5.19 bacteria strain. 
This enzyme is a 60 kDa monomer metalloprotease, with 
Mn2+ in its natural form. Its activity is confirmed in the 
hydrolysis of the P-F bond presence in DFP, Sarin and 
Soman. The activity to hydrolyze P-O and P-CN is less 
and does not have the ability to hydrolyze P-S. It is also 
shown that OPAA from Alteromonas sp. hydrolyzes 
paraoxon with 2% rate of DFP. The OPAA acts on 

anhydrate phosphorus bonds in organophosphorus 
compounds (e.g. nerve agents) [85]. International Union of 
Biochemistry in 1992 named the enzymes capable of 
degrading P-F or P-CN bonds as OPAA [86]. OPAA is a 
single-chain polypeptide consisting of 517 amino acids 
with 58kDa, with pH range between 6.5-9.5 (with 
optimum of 7.5-8.5) and 65-10 temperature range 
(optimum  at 55-40°C) and manganese (Mn2+) [87].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. The decomposition mechanism of PTE in Paraoxon 
analysis [80]. 

 
Diisopropil flrophosphatase (DFPase) 
 

DFPase is a 35 kDa protein with 314 amino acid subunits. 
It was firstly obtained from the nodes and brain of squid 
Loligo vulgaris by Francis hoskin in 1966. This enzyme is 
only found in Cephalopods and requires Calcium ions for 
its function [88]. Since these enzymes do not have a 
specific physiological substrate, is classified in the 
subgroup of phosphotriestrase (EC.3.1.8) more accurately 
is classified based on their substrate specificity into two 
subgroups of arylalkyl fluorophosphates (EC.3.1.8.1) and 
diisopropyl fluorophosphates (EC3.1.8.2) [89].  
This enzyme is able to cut the P-F bond in 
fluorophosphates, soman and sarin with 0.1 rate of DFP. 
Hydrolysis activity of DFPase for Paraoxon is very low 
compared to substrate of P-F [90]. 
 

 
 
Figure 11. Proposed mechanism for the enzyme OPAA enzyme 
function and DFPASE [88]. 

paraoxonase (PON1) 
 

PON1 is an enzyme found in mammalian body, and is 
responsible for the hydrolysis of oxidized Tioat produced 
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by the P450 system and is able to hydrolyze P-O, P-F and 
P-CN. Paraoxonase protein is a dimer protein with a 
molecular weight of 43000 to 45000. Paraoxonase gene is 
on chromosome 7. This enzyme possesses two active sites. 
The property is eligible for the hydrolysis of 
organophosphorus compounds [91-93]. 
 

Amino peptidase P 
 

PepP is a metaloproteain in E. coli and the Mn2 + ion is 
required for its function. The highest degradation rate was 
observed when the substrate consists of methylisopropyl 
and methylisobutyl [94]. 
 

Phosphonate ester hydrolase (PEH) 
 

H factors are produced by the degradation of G and V 
nerve agents using enzymes such as OPH and OPAA, 
which are toxic. In a study in 2001 by Elachvili et, a 
bacterial enzyme was found that converts H factor to 
methyl phosphonic acid (MPA) [95]. 
 

 
 

Figure 12. Decomposition of H generated by PEH [95]. 

 
Natural and native sources (microbes) containing 
organophosphate-degrading enzymes 
In a study by Latifi et al., IRLM.1, IRLM.2, IRLM.3, 
IRLM.4 and IRLM.5 isolates were identified from 
chemical plant effluent and contaminated agricultural 
soils. These strains contain OPs-degrading enzymes and 
can consume Diazinon and Chlorpyrifos as a source of 
carbon and phosphorus [96]. A Pseudomonas aeruginosa 
strain isolated in North of Iran from contaminated 
agricultural soil showed a high ability to break down the 
Diazinon [97]. 
Commercial applications of enzymes 
OPs- degrading enzymes has wide applications including; 
designing a bioreactor containing a consortium of bacteria 
or purified enzymes for the utilization of bio- pesticides 
[98-100], the treatment of poisoning with 
organophosphorus compounds [101, 102], with a nano 
protective cover to prevent immune reactions, designing 
biosensors to identify areas contaminated with Ops [103-
108]. 
Strategies for enzyme engineering 
The enzyme engineering strategies are applied to increase 
the strength and stability such as enzyme capsulation [109, 
110]; changes in affinity of enzyme [111], changes in the 
specificity of the enzyme [112], a direct enzyme 
conjugation with quantum dots CDS [113], enzyme 

immobilization on nano-porous silica substrate [114, 115]; 
cell surface display [116], and secretory enzyme 
expression [117]. 

 
Table 1. Comparison of OPH, OPAA, and DFPase enzymes. 

 

Enzyme Sourse Activity 
DFPase Squid (Loligo vulgaris) DFP>GF=GB>GD>GA 

OPH or PTE 
Bacteria (P. diminuta and 
Flavobacterium) GD>GF=DFP>GB>GA 

OPAA Bacteria (Alteromonas sp.) DFP>GF=GB>GD>VX 
 
Conclusion 
Regarding to the fact that OPs have harmful effects to 
human health and nature, their use should be limited as far 
as possible or the analogues with lower toxicity should be 
applied such as organophosphorothioates, which is potent 
to be hydrolyzed in the mammals. In addition, developing 
the processes to detoxifyor degrade OPs is a serious global 
need and country planning.  
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