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Introduction  

The initiation of cancer development occurs when genomic 

alterations and chromosomal abnormalities are acquired. 

These changes can arise from uncorrected errors that occur 

during DNA replication, repair, or exposure to mutagens.1 

Certain of these modifications not only expedite the buildup 

of somatic mutations2 but also play a mechanistic role in the 

advancement of cancer. There is a hypothesis suggesting that 

a subset of cells carrying these "driver mutations" will 

benefit selectively from them, leading to the enhancement of 

characteristic features of cancer.3 The mean quantity of driver 

mutations present in each tumor differs among distinct types 

of cancer.4 On the contrary, it is normally assumed that the 

majority of somatic modifications, referred to as "passenger 

mutations," hold negligible to no functional importance.5 

Despite the progress made in the field of cancer genomics, 

the task of differentiating the scarce driver mutations present 

in a tumor from the vast background of passenger mutations 

continues to be formidable. 

Mutational hotspots are genomic regions characterized by 

an elevated frequency of nucleotide substitutions, which are 

linked to both the genesis and advancement of tumors.6 

Prominent sequencing endeavors, including The Cancer 

Genome Atlas (TCGA),7 the International Cancer Genome 

Consortium (ICGC),8 and Project GENIE9 have concluded 

with an abundance of potential hotspot mutations whose 

functional significance is uncertain. The data are efficiently 

represented and structured through the utilization of multiple 

platforms, such as BioMuta10 and cBioPortal11,12 that enable 

the downloading and examination of extensive cancer genomics 

datasets. The site of mutations most commonly observed is 

in exons, or the coding sequence of proteins. The functional 

impact of these entities is ascertained through two approaches: 

Abstract 

Introduction: Somatic mutations in cancer are caused by a complex interaction of many starting and driving factors that work together to create 

a unique mutational landscape. During tumor growth, the controlled cellular environment restricts the alteration of only a few pathways. As a 

result, tumors that originate from various cell types frequently display similar genetic alterations. A noteworthy development in recent times is 

the increased detection of hotspot mutant residues located within particular genes. PhiDsc (Protein Functional Mutation Ident ification by 3D 

Structure Comparison), an innovative statistical technique developed for the purpose of detecting functional mutations in proteins that are prone 

to aberrations, is introduced in this study with a specific focus on the RAS and RHO protein families. 

Materials and Methods: By combining 3D structural alignment and recurrence data, PhiDsc determines whether mutated residues within a 

protein family have the potential to be functionally significant. The protein relationships within families were determined using UniProtKB, and 

the structural alignment of similar proteins in three dimensions was executed using DALI. The RCSB Protein Data Bank was consulted for the 

protein structures. The extraction of mutational data for the pertinent proteins was performed using BioMuta. The 3D hotspot database was 

utilized to identify mutational hotspots within the protein families under investigation. PhiDsc is accessible for free at https://github.com/ 

hobzy987/PhiDsc-DALI. 

Results: The PhiDsc method successfully found both known and unknown mutational hotspots and changed residues in the RAS and RHO 

protein families. These changes are functionally important because they happen in or near active regions and domains that are  important for 

protein-protein interactions. 

Conclusions: PhiDsc, an innovative statistical method, effectively detects functional mutations in frequently aberrant genes through the selective 

targeting of altered residues located in protein families that are highly probable to have functional significance. The present study showcased the 

ability of PhiDsc to identify mutations that impact the development and advancement of cancer, with a specific focus on the RAS and RHO 

protein families. 

Keywords: Cancer, Protein Structural Alignment, Functional Mutations 

Citation: Hoballa MH, Eslahchi C. Structural Comparison for Identifying Protein Hotspots Using PhiDsc Method. J Appl Biotechnol Rep. 

2023;10(4):1156-68. doi:10.30491/JABR.2023.383043.1601 

https://doi.org/10.30491/JABR.2023.383043.1601
mailto:ch-eslahchi@sbu.ac.ir
https://github.com/%20hobzy987/PhiDsc-DALI
https://github.com/%20hobzy987/PhiDsc-DALI
https://doi.org/10.30491/JABR.2023.383043.1601
https://www.orcid.org/0000-0001-8952-0640
https://www.orcid.org/0000-0002-8913-3904


http://www.biotechrep.ir 

Hoballa and Eslahchi 

 

1157  |  J Appl Biotechnol Rep, Volume 10, Issue 4, 2023  

direct analysis of their effect on the encoded protein or 

utilization of in silico bioinformatic methods for 

prediction.13,14  

The functional significance of tumor mutations has 

traditionally been deduced from their statistical recurrence, 

with the underlying assumption that any aberrant changes 

identified in tumors are probably coincidental and lack 

functional implications.15 Nevertheless, recent studies have 

revealed that the allocation of passenger mutations throughout 

the genomes of cancer cells is not coincidental.16 Conversely, 

these entities tend to congregate in nucleotide sequence 

contexts that are impacted by the distinct mutational 

mechanisms exhibited by each tumor.17,18 On the other hand, 

there is a theory that the location of functionally important 

residues along the protein sequence and the surrounding 

nucleotides affect the spread of driver mutations.19,20 It might 

be hard to find functional mutations just by looking for 

recurrences because there may be underlying mutational 

mechanisms that target specific genomic contexts. This 

phenomenon may lead to the frequent alteration of residues, 

which may not inherently be involved in the progression of 

tumors.21 

A multitude of methods are employed to identify hotspot 

and driver mutations by analyzing the frequency of mutations 

within a specific gene across a collection of tumor samples. 

MutSig22 and MuSiC23 are two such examples. In order to 

improve the detection of mutational hotspots in genes that 

undergo infrequent mutations, protein-level annotation 

methods are applied, including local-positional clustering,24 

phosphorylation site inclusion,25 and data derived from 

paralogous protein domains.26 These methods facilitate 

protein-level annotation,27 aid in the detection of functional 

mutations in genes with uncommon mutation occurrences, 

and contribute to the analysis of three-dimensional protein 

structures.  

Several methods are available for predicting functional 

alterations across diverse protein sequences and structures. 

Methods including 3DHotspots,28 Hotspot3D,29 Mutation3D,30 

and Signatures of Cancer Mutation Hotspots in Protein 

Kinases31 improve our understanding of genetic abnormalities 

by utilizing the three-dimensional structure of proteins and 

3D reconstruction of protein networks.32 Instead, methods 

like PinSnps,33 StructMAn,34 Hot-MAPS,35 and SpacePAC,36 

as well as SAAMBE-3D,37 which use somatic cancer mutation- 

enriched protein-protein interactions,38 are more useful. The 

objective of these methods is to gain an understanding of 

how mutations affect signal transduction, activation cascade 

proteins, and the function of the original protein. Methods 

based on individual protein structures or three-dimensional 

reconstruction of protein networks have improved the 

detection of mutational clusters in cancer.39,40 These techniques 

have unveiled functional implications, including folding-free 

energy and protein monomer stability. MutaGene and other 

methods take into account the specific DNA sequence 

context in which protein-altering mutations occur.41  

Some methods need structures as input, while others only 

need sequences. It can be hard to group methods based on 

what they need as input, but the results of these methods 

often show if a predicted mutation happens at a hotspot 

residue. Still, there are problems to solve, especially when 

only driver genes are being studied and it's hard to tell the 

difference between driver-specific mutations and passenger 

mutations in the same gene. So, it is important to look at 

protein sequences in the context of a bigger picture in order 

to figure out how mutations change the p53 protein's 

functional sites and shape. 

To address these issues, we introduce PhiDsc, denoting 

Protein Functional Mutation Identification by 3D Structure 

Comparison. PhiDsc circumvents these challenges by 

identifying cancer-causing changes in a target protein through 

an assessment of three-dimensional structural similarity, 

protein folding data, and mutation frequency within the same 

gene family. By examining frequently altered regions of the 

protein family and comparing the three-dimensional structures 

of human wild-type proteins within the same family, PhiDsc 

identifies potential functional mutations. 

PhiDsc integrates these methods by classifying protein 

families based on functional regions, hotspot mutations, 

and sequence similarity. Consequently, PhiDsc establishes 

connections between extensively studied proteins with 

functional mutations and lesser-explored proteins within the 

same family, achieved by comparing the three-dimensional 

structures of related domains. 

 

Materials and Methods 

Datasets and Software 

UniProtKB: UniProtKB (Universal Protein Knowledgebase)42 

is a comprehensive database that provides users access to a 

vast amount of protein sequence and functional information. 

One of the many databases that UniProtKB provides is the 

Protein Families Database. The Protein Families Database is 

a collection of protein families and domains curated and 

classified based on their sequence, structure, and functional 

similarities. It includes over 20,000 protein families and 

more than 200,000 domains, covering many biological 

functions and processes. 

Each protein family in the database is annotated with 

information on its function, subcellular localization, evolutionary 

history, and links to relevant literature and other resources. 

The database also includes tools and resources for analyzing 

and visualizing protein family data, such as sequence 

alignments, phylogenetic trees, and domain architectures. 

The Protein Families Database is an important protein 

structure and function resource for researchers. It provides 

information on the relationships between different protein 

families and their evolutionary histories. It is used in various 

applications, from predicting protein function and structure 

to understanding the molecular mechanisms of disease. 

RCSB: The Research Collaboratory for Structural Bioinformatics 

(RCSB)43 is a non-profit entity committed to enabling the 
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public to utilize a wide range of data pertaining to the 

structures of biological macromolecules. At the core of its 

objectives lies the RCSB Protein Data Bank (PDB), an all-

encompassing repository. 

The RCSB PDB is the preeminent and most widely 

utilized repository of three-dimensional structures pertaining 

to complexes, nucleic acids, and proteins. The application 

provides users with a suite of tools to analyze and visualize 

the more than 180,000 experimentally determined structures 

that it contains. 

In addition to the PDB, the RCSB furthers the pursuit of 

knowledge by offering supplementary resources. Providing 

an extensive collection of specialized educational materials 

and resources designed for students, educators, and researchers, 

the PDB-101 educational portal is an invaluable asset. The 

Ligand Explorer application facilitates the investigation of 

macromolecular structures by providing users with the 

ability to search for particular ligands that are of interest 

within the binding sites. In addition, knowledge is enhanced 

through the assistance of the RCSB Chemical Component 

Dictionary, which details the chemical components that 

make up biological macromolecules. 

The RCSB is dedicated to the promotion of scientific 

knowledge and education through the distribution of 

superior structural data and resources. Its primary objective 

is to facilitate unrestricted entry into the vast collection of 

structural data at the disposal of the scientific community, 

thereby aiding in the investigation of the composition, 

operation, and interrelationships of biological macromolecules. 

BioMuta: The BioMuta dataset44 is a comprehensive 

knowledge base of somatic mutations identified in human 

cancers. It includes information on over 4.5 million 

mutations from over 36,000 tumors across 37 cancer types. 

Each mutation in the BioMuta dataset is annotated with its 

genomic location, nucleotide change, amino acid change, 

and functional impact. In addition, the dataset provides 

information on the frequency of each mutation in different 

cancer types and its association with specific pathways and 

functional domains. 

The BioMuta dataset also has annotations for mutations 

that might be clinically important, like those that change 

drug targets or are linked to drug resistance. This information 

can be used to inform the development of personalized 

cancer therapies. BioMuta functions as a curated repository 

of single-nucleotide variations associated with cancer, 

aggregating information from an array of sources. The 

variations have been systematically gathered from reputable 

databases such as COSMIC,46 ClinVar,47 CIVIC,48 and 

UniProtKB. Utilizing BioMuta, all the protein family's 

residues members are annotated with mutational and hotspot 

data (version 4)10 and 3Dhotspots.39 By proactively procuring 

information from scholarly articles and utilising automated 

analyses of publicly accessible datasets, such as TCGA7 and 

ICGC,8 the database is enhanced. Three-dimensional hotspots 

manifest as a discernible characteristic of BioMuta. Statistically 

significant mutations are encapsulated within these hotspots, 

which are strategically arranged within three-dimensional 

protein structures. Notably, these mutations are identified in 

the context of cancer. By identifying particular mutational 

sites in the dataset, hotspot mutations furnish an invaluable 

asset in the quest to comprehend mutational trends that are 

linked to cancer. Therefore, the BioMuta dataset is a valuable 

resource for cancer genomics researchers, providing a 

comprehensive view of the somatic mutations that occur in 

human cancers and their potential clinical significance. It has 

been used in numerous studies to identify potential therapeutic 

targets and biomarkers for cancer diagnosis and prognosis. 

DALI: The DALI (Distance-matrix ALIgnment)45 algorithm 

is extensively employed in the comparison and alignment of 

protein structures. It operates on the principle of utilizing a 

distance matrix, which is a matrix comprising the pairwise 

distances between every pair of residues in a protein 

structure. The Dali algorithm identifies similar regions in 

two protein structures by utilizing their distance matrices 

and a heuristic approach. The initial step involves the 

computation of dihedral angles, a collection of structural 

descriptors that characterize the local geometry of protein 

structures. The alignment of these structures is then 

accomplished via dynamic programming, with the alignment 

score optimized by minimizing the distance between 

equivalent residues in the two structures. 

Numerous studies have utilized the Dali algorithm to 

identify functionally significant regions in proteins, predict 

the structure and function of proteins, and aid in drug 

discovery by identifying potential small-molecule inhibitor 

targets. This algorithm is extensively used in structural 

biology due to its high precision and capacity to detect 

similarities among distantly related proteins. 

 

PHIDSC Algorithm 

The PHIDSC method revolves around a protein denoted as 

P, characterized by a recognized three-dimensional structure 

and m amino acid residues. This method encompasses six 

distinct stages. Initially, leveraging data from UniProtKB, 

the entire ensemble of proteins belonging to the same family 

as P is identified and consolidated into a list termed B(P). 

Subsequently, all human proteins in B(P) with three-

dimensional structures (PDB) from the Protein Data Bank 

are selected to form the set A(P). 

The resultant matrix, denoted as E(P), delineates the 

outcomes when aligning the three-dimensional structures of 

the target proteins in A(P) with the three-dimensional 

structure of P. Subsequent to this alignment, a probability is 

computed for each residue of P through the use of the 

3Dhotspot database and BIOMUTA V4. This computation 

involves retrieving mutational information for each protein 
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in A(P). The derived probabilities and scores undergo 

thorough examination to pinpoint any potential functional 

mutations in protein P. The ensuing sections offer a detailed 

elucidation of each phase integral to the entire process. 

 

Step 1: Define the Protein List A(P)  

In the first step of the algorithm we do:  

 The database utilization involves the application of the 

UniProtKB database in order to ascertain the proteins 

that are linked to a particular protein, represented as P, 

and its associated family. 

 Utilizing the Protein Data Bank at RCSB (PDB) is how 

the three-dimensional structure of protein P is determined. 

The structures of both wild-type and modified proteins 

are contained in this repository. 

 In order to optimize the alignment phase, the algorithm 

chooses the variant of protein P that has undergone the 

fewest modifications, thereby guaranteeing that it does 

not contain any mutations. The selected variant precisely 

matches the length of P. 

 The final stage, known as list formation, culminates in 

the generation of the protein list A(P), which is 

represented as A(P) = {P1, P2, P3…Pn}. 

 

Step 2: 3D structure alignment  

In this step of the algorithm the three-dimensional structures 

of the target proteins within A(P) are aligned with the three-

dimensional structure of the reference protein, P. The alignment 

is conducted using Dali method. 

 

Step 3: Define Matrix E(P) 

In the third step of the algorithm we do: 

 Matrix Construction: The matrix E(P), denoted as E(P) 

= [akij
j

], is formed with m rows representing the number 

of amino acids in protein P and n columns representing 

the number of proteins in A(P). 

 Element Representation: Each element, akij
j

, within the 

matrix denotes the type of amino acid present in the 

sequence of protein Pj that aligns with the ith amino acid 

in protein P. 

 Index Explanation: Here, kij signifies the position 

number of the amino acid in the sequence of protein Pj 

that aligns with the ith  amino acid in protein P. 

 

The matrix E(P) serves as a comprehensive representation 

of the aligned amino acid residues across the protein family, 

aiding in subsequent analyses. 

 

Step 4: Obtain Mutational Details for Each Protein in A(P) 

The fourth step of the algorithm involves accessing the 

BioMuta database in order to obtain exhaustive information 

regarding mutations that impact each protein in the protein 

family (A(P)). As a result, every residue in the protein 

family is systematically annotated with mutational and 

hotspot data acquired from BioMuta. 

This results in a comprehensive representation of the 

mutational landscape within the protein family, which can be 

utilized as a foundation for subsequent research.  

 

Step 5: Rank the Residues 

In the fifth step of the algorithm each amino acid within the 

members of A(P) is assigned a score based on the specific 

mutational data associated with that amino acid. The scoring 

is as follows: 

Let ak
t  be the kth amino acids of protein Pt. Define: 

 

m(ak
t ) = {

1  if ak
t  is reported as mutation in biomuta 

2  if ak
t  is reported as hotspot in 3Dhotspots database

0  otherwise(either non − aligned or not mutated)

 

 

Let the ith row of the matrix E(P) be [aki1
1 , aki2

2 , …, akin
n ], 

1 ≤ i ≤ m. The following score is assigned to ith amino 

acids of P:  

 

S(i) =  ∑m(akij
j
)

n

j=1

 

 

The probability associated with each acquired score S(i) at 

each position (row in the matrix E(P)) is determined to 

assess its statistical significance. Let protein Pt have mt 

amino acids of which lt are mutated in BioMuta. Define: 

 

P(ak
t ) =

{
 

 
lt
mt
        , m(ak

t ) > 0

1 −
lt
mt
, m(ak

t ) = 0

 

 

To differentiate between non-mutated and non-aligned 

residues (both with score m(ak
t ) = 0), and considering that 

functional changes are encoded in the alignments, an 

assumption is made.  Then, if in akij
j
 (j), j is a gap, we 

assume P (akij
j
) = 1. 

Now the overall probability P(S(i)) is calculated as: 

 

P(S(i)) = Πj=1
n P(akij

j
) 

 

This step establishes a ranking system based on the 

mutational data, providing insights into the significance of 

amino acids in the context of functional changes. 

 

Step 6: Select candidates.  

In the final step of the algorithm the ith amino acid of protein P  
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Figure 1. The PHIDSC Technique. The method starts by gathering 

family members; the algorithm then gets the 3D structures from RCSB, 

pairs members with the input protein, and then enriches mutations in 

the alignments before calculating scores and probability. 

is chosen as a candidate functional mutation based on the 

following conditions: 

 

 P(S(i)) < 
0.01

n
, (following the Bonferroni correction) 

 S(i) > 
n

2
 

 

This step ensures a stringent selection process, where 

candidates are chosen if their associated probabilities are 

below a specified threshold (adjusted for multiple testing) 

and if the cumulative score S(i) exceeds half of the total 

number of proteins (n/2). This selection mechanism aims to 

identify potential functional mutations with a high degree of 

confidence. 

The method is schematically described in Figure 1. 

 

Leave-One-Out Cross-Validation (LOOCV) 

In the LOOCV approach, one data point is systematically 

excluded from the training set in each iteration. The model is 

trained on n−1 samples, with the excluded sample serving as 

the validation set. The predictive accuracy of the model is 

evaluated for the omitted data point in each iteration, and 

this process is repeated for all possible combinations, 

resulting in n iterations. The overall efficacy of the model is 

determined by averaging the errors across all iterations, 

providing a comprehensive assessment of its generalization 

capability. For a specific protein P,  Ai(P) ={P1, P2 ,P3,…Pn 

}−{Pi} is utilized to generate PHIDSC predictions. This 

involves using the protein family set  Ai(P) in each iteration 

to predict functional mutations for P. The robustness of these 

predictions is evaluated by collecting anticipated functional 

mutations for each iteration (1≤i≤n). A predicted functional 

mutation is considered robust if it is consistently indicated in 

at least 80% of all rounds, ensuring reliability and consistency 

in the prediction outcomes. 

 

Residue Interaction Network  

In order to assess the physical consequences of mutations on 

the configuration and operation of proteins, the Residue 

Interaction Network (RIN) approach is applied. Chang et 

al.20 established that mutations that transpire in close 

proximity to other hotspot mutations within the three-

dimensional structure of a protein are more probable to be 

classified as hotspot mutations. User-defined RINs are 

produced by employing the RINalyzer tool,49 which is an 

integral component of Cytoscape,51 a molecular interaction 

network analysis platform. These RINs are derived from the 

three-dimensional protein structure acquired from the RCSB 

Protein Data Bank. The RINerator, an important part of the 

RINalyzer, checks the strength of different types of 

biological interactions,50 such as hydrogen bonds, contacts/ 

clashes, and hydrogen atoms. RINalyzer, a Java plugin for 

Cytoscape, facilitates the examination and visualization of 
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molecular interaction networks through an intuitive interface. 

The results from cBioPortal,11,12 which is a curated mutation 

dataset made up of different cancer samples, are compared to 

the results of RIN's interacting residues. It is through this 

comparative analysis that we learn more about how mutations 

affect protein interactions, which is a major contribution to 

the field of cancer-associated mutations as a whole. 

 

Results 

PHIDSC is applied to HRAS from the RAS59 subfamily and 

RhoA from the RHO60 subfamily of proteins. 

 

HRAS 

A(HRAS) = DIRAS1, DIRAS2, GEM, KRAS, NRAS, 

RAP1A, RAP1B, RAP2A, RASL12, REM1, REM2, RERG, 

RRAD, RRAS, and RRAS2 was the family group of HRAS. 

Dali successfully matched 98 percent of the HRAS residues 

to the residues of each family member (Table 1), 

demonstrating the target protein's strong structural 

resemblance to the families of related proteins. (Additional 

files HRAS alignment.) As a result, PHIDSC scored 168 of 

189 HRAS’s residues (89%) and predicted 13 residues as 

functional mutations (Table 2). All these predicted 

functional mutations passed cross-validation tests (Figure 2) 

and were consistently predicted by six different algorithms 

to be efficient and protein-modifying. 

Utilizing the HRAS structure, RIN is produced (RCSB 

database ID 4Q21, with 168 residues). In the functional 

domains of the protein (G boxes, Switches I and II, GDI, and 

GEF interaction sites, and GTP/MG2+ binding domain), 

thirteen putative functional alterations shared 58 nearby 

residues. Additionally, the cBioPortal reports that 25 of 

these 58 residues were altered in human cancers. 

 
Table 1. The Data Shows the Degree to Which Each Protein (HRAS-P01112) is Structurally Aligned with the Other Members of its Protein Family 

Protein RALA RALB RAP1A RAP1B RAP2A KRAS RASL12 NRAS RERG RIT1 RRAS2 RRAS Median 

PDB ID 2BOV 2KWI 1C1Y 4DXA 1KAO 3GFT 3C5C 3CON 2ATV 4KLZ 2ERY 2FN4 
 

Alignment 100 100 97.619 98.214 98.214 98.809 95.238 92.857 98.809 92.261 97.619 100 98.214 

 
Table 2. PhiDsc's List of Potential HRAS Functional Mutations. The PHIDSC score p-value and projected interacting residues from the RIN analysis 

are used to order the locations of the residues. When available, the dbSNP polymorphism ID or COSMIC mutation reference is also included 

       HRAS 

Residue Nu p-value Interacting Residue Mut Ref Nu 

12 2.66E-07 11 16 
       

COSM483 

74 1.72E-06 5 70 71 73 75 
    

COSM5991570 

13 2.57E-06 117 
        

COSM486 

93 6.18E-06 81 82 90 91 113 137 
   

COSM9497546 

91 8.72E-06 87 88 90 93 95 
    

COSM6476473 

22 1.38E-05 18 19 20 32 26 28 146 149 152 COSM6923245 

96 1.54E-05 9 10 11 92 93 97 98 99 100 RS889495169 

117 1.85E-05 13 14 83 84 116 119 120 144 
 

CSOM304967 

31 3.84E-05 30 33 
       

COSM6915342 

40 4.20E-05 20 24 32 38 39 54 55 57 
 

RS763920334 

155 5.08E-05 79 144 151 152 153 159 
   

COSM9515051 

148 5.23E-05 119 145 150 
      

COSM6903495 

38 5.93E-05 39 40 57 
      

RS750680771 

 
 

 
 

Figure 2. The Data Displays the LOOCV for the Protein HRAS; the number of repetitions for each residue in the system's iterations is displayed 

(>80%), indicating that the system's results are reliable since they are achieved in all LOOCV iterations. 
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Residues 12, 13, 74, and 93, known to be crucial functionals 

and often mutated in different cancer types, made up the top 

four PHIDSC predictions in HRAS.61 Residues 12 and 13 

form a domain interacting with GTP/Mg2+ and guanine 

nucleotide dissociation inhibitors (GDI).62 Typically, it is 

seen in malignancies such as bladder cancer,63 thyroid 

cancer,64 and other diseases such as Costello syndrome61 and 

Schimmelpenning-Feuerstein-Mims syndrome.63,65 

Endometrioid cancer and sebaceous carcinoma have 

mutations in residue 74, but few samples of prostate cancer 

exhibit mutations in residue 93.66 The Ensemble Learning 

Approach for Stability Prediction of Interface and Core 

Mutations (ELSPIC) claims that,67 residue 93, is found in the 

protein's core; it is likely that it has a direct impact on the 

structure and functionality of the protein. 

Despite not being detected in any protein domains, three of 

the 13 putative functional mutations in HRAS were discovered 

close to the junction of exons 3 and 4 at position 97. Finally, 

phosphorylation site residue 96 has been found; the other 

residues, as indicated in (Figure 3), were found in functional 

protein domains. 

 

RhoA 

RhoA, a member of the RHO60 subfamily of proteins with 

A(RhoA) = {RHOB, RHOC, RHOD, RHOQ, RHOU, RND1, 

RND3, RAC1, RAC2, RAC3, CDC42}. 

The RCSB database retrieves 3D structure files for each 

member (if found in PDB) of A(RhoA). Table 3 displays the 

complete list of PDB structures. The input protein and each 

member of its family are then compared structurally in pairs 

using the Dali server. In the constructed alignments, 97 

percent of the RhoA residues lined up with the residues of 

each family member. The target proteins support these 

findings and their respective protein families' striking structural 

similarities, as an outcome, 179 out of 193 residues were 

scored for RhoA. 

In the last phase, the P-value of PHIDSC statistics is 

obtained for each target protein residue. For RhoA, eight 

potential functional mutations were found. The RhoA protein 

likely functional mutations generated by the PHIDSC method 

are shown in Table 4. All eight candidates successfully 

passed the cross-validation process (Figure 4). Remarkably, 

none of the cancer mutation databases identified any 

evidence of a mutation in RhoA residue 29. Nevertheless, 

mutation prediction tools suggest a potential alteration in the 

functional activity of RhoA, shedding light on the significance 

of these candidates in the context of cancer-associated 

mutations.

 
 

 

 
Figure 3. It Shows the Interacting Residues in the Outer Circle and the Potential Functional Alterations in the Inner Circle. As the canSAR BLACK 

system claims,
60

 HRAS functional regions are shown by the blue areas. In addition, the connections between the outer ring of interacting residues 

and the inner circle of potential functional mutation reflect residue interactions. Only the HRAS residues altered in cBioPortal are shown in this 

image. 
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Table 3. The Data Demonstrates How Each Protein (RhoA) is Structurally Aligned with the Relevant Protein Family Member 

Protein RAC1 RAC2 RAC3 RHOB RHOC RHOD RHOQ RHOU RND1 RND3 Median 

PDB ID 1E96 1DS6 2C2H 2FV8 2GCN 2J1L 2ATX 2Q3H 3Q3J 2V55 
 

Alignment 99.441 99.441 93.854 95.53 98.324 87.709 99.441 94.413 97.206 100 97.765 

 

 
Table 4. The Data Covers all Potential RhoA Functional Mutations Suggested by the PHIDSC Method. The table lists each possible functional 

mutation's interacting residues in the third column, their position number (P) in the first column, and their P-value in the second. The mutations' 

"COSM" letters denote that they were marked in the cosmic database as tumor-related mutations. At the same time, the mutations' "rs" letters imply 

that the Dpsnp database has annotations for them. 

                                        RHOA 

Residue Number p-value Interacting Residue Mut Ref Nu 

111 3.07904E-05 78 79 80 109 110 177 
  

COSM2849881 

34 4.86819E-05 35 
       

COSM2849895 

139 9.956E-05 84 86 89 92 122 139 140 143 COSM2849897 

168 0.000147858 170 171 172 
     

COSM7114068 

110 0.000209526 77 78 79 80 107 108 11 
 

RS368767616 

29 0.000224094 23 27 28 29 31 
   

NO 

172 0.000300752 46 48 168 169 172 174 175 176 COSM1309264 

127 0.000484266 87 121 124 125 127 129 130 131 MU85445108 

 

By utilizing the RCSB database's structure 1OW3, we 

constructed the Residue Interaction Network (RIN) for 

RhoA. In this network, the eight identified potential functional 

alterations are surrounded by 42 neighboring residues, with 

18 of them already recognized as actual mutations according 

to the cBioPortal database (refer to Table 3 for interacting 

residues). Notably, RINalyzer data indicates that these 

neighbors of putative functional mutations are associated 

with Protein-Protein Interaction (PPI) functionals. These 

interacting residues, including position 127, are also situated 

in RhoA protein domains related to interactions with GTPase- 

activating proteins (GAP), Guanine Nucleotide Exchange 

Factors (GEF), and Guanine Nucleotide Dissociation Inhibitors 

(GDI), as well as phosphorylation sites. This underscores the 

crucial role of residue 127 in influencing the functional 

activity of RhoA (Figure 5). 

Among cancer samples, four RhoA residues (34, 139, 111, 

and 168) exhibited high scores (Table 4). The 3D structure 

analysis of RhoA reveals that residue 34 is in proximity to 

both the core region and the GTPase-Activating Protein 

(GAP) interaction site. Mutations at this site, as per data 

from ELASPIC and COSMIC, enhance the affinity for 

ARHGAP1, a crucial GAP protein for RhoA activation. 

As for the RhoA mutant at residue 139, it was identified in 

one non-small cell lung cancer sample and two samples each 

of cervix and stomach cancer, based on COSMIC data. 

However, in the last two samples, it was not classified as a 

functional mutation. 

Residue 111 mutations were observed in a sample of 

individuals with stomach cancer, leading to an increased 

affinity for the CTRO protein, known for controlling 

cytokinesis by forming a contractile ring.7 

A mutation in residue 168 was found to disrupt the interaction 

between RhoA and PKN1/PKN2, two proteins associated 

with prostate cancer that play essential roles in cell migration 

and proliferation.69,70 This mutation also increased affinity 

with the KAPCA gene, linked to ovarian and breast cancer.68 

These findings shed light on the complex relationships and 

functional implications of RhoA mutations in various cancer 

types (Figure 5). 
 

 

Figure 4. The Data Demonstrates the LOOCV for the Protein RhoA; the number of repetitions for each residue is shown in all iterations of the 

system, suggesting that the results of the system are robust since the original findings are attained in all LOOCV rounds. 
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Figure 5. It Demonstrates the Interacting Residues in the Outer Circle and the Potential Functional Alterations in the Inner Circle. RhoA functional 

zones are shown by the blue areas by the canSAR BLACK system.
60

 In addition, the connections between the outer ring of interacting residues and 

the inner circle of potential functional mutation reflect residue interactions. Only the HRAS residues altered in cBioPortal are shown in this image. 

 

Discussion 

Our research investigates protein families classified by 

UniProtKB that consist of related entities with comparable 

sequences, structures, and functions. Our hypothesis posits 

that mutations that are shared among these protein families 

and are associated with the same cancer phenotype are 

prevalent in the same domain. This suggests that domains 

and modifications are common throughout the family. The 

proposed methodology employs scores as a means of statistically 

assessing whether these mutations indicate functional 

alterations in family-shared regions. 

In order to authenticate our method, PhiDsc, an innovative 

approach to detect functional protein mutations, we performed 

experiments utilizing domains from two widely recognized 

protein families—HRAS and RhoA—both of which are 

implicated in the pathogenesis of cancer.  We incorporated 

several factors into our methodology: the location of a 

mutation within the three-dimensional structure of the 

protein,71 the frequency of its recurrence in human tumors,72 

and its correlation with established functional hotspot 

mutations in paralogous proteins belonging to the same 

family or possessing comparable domains.73 In order to 

optimise statistical performance by reducing false positives, 

we implemented the Bonferroni restriction. PhiDsc presents 

a thorough and validated methodology for linking mutant 

residues to particular functional regions of biological proteins, 

thereby providing significant contributions to the understanding 

of protein alterations associated with cancer. 

The performance of PHIDSC was evaluated by means of 

an analysis of the HRAS and RhoA proteins. HRAS, as 

classified by the KEGG Pathway, is a GTPase protein that is 

a member of the RAS subfamily. It is involved in the 

regulation of a multitude of biological processes across 84 

pathways. The residues in HRAS that are most significantly 

impacted, namely positions 12, 13, and 61, demonstrate 

correlations with a multitude of cancer subgroups.73 Sustained 

HRAS activity is likely responsible for its ability to promote 

tumor development. 

Likewise, according to the KEGG Pathway, RhoA is 

classified as a signaling G protein belonging to the RHO 

subfamily, which regulates an extensive array of biological 

processes spanning 43 pathways. The RhoA residues that 

undergo frequent alterations, particularly at positions 17 and 

42, have been identified in numerous types of cancer.74 The 

ongoing activation of RhoA within the protein is responsible 

for its oncogenic potential.  

With the exception of one potential residue in RhoA, all 

residues identified by PHIDSC exhibited alterations in 
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cancer samples and various disorders, including Costello 

syndrome, which is associated with germline HRAS 

mutations.75 Despite the rare occurrence of a specific putative 

functional mutation in cancer mutation datasets and its lack 

of prior recognition as a hotspot mutation, CanSar black60 

analysis revealed its presence in active functional domains 

of proteins or its interaction with functional residues within a 

more extensive network. Our study expanded its investigation 

beyond the Biomuta database by utilizing tumor samples 

from additional datasets, including COSMIC,46 cBioPortal, 

and Dbsnp. This expansion unveiled potential functional 

hotspots that had not been detected in Biomuta. Notably, 

these were discovered to be infrequently modified residues, 

with the exception of RhoA residue 29. This implies that 

PHIDSC improves the capability of identifying functional 

mutations that occur infrequently and were not previously 

recognized as hotspots. Although the COSMIC and Dbsnp76 

databases did not contain any mutational records for RhoA 

residue 29, it was determined to be a highly variable location 

by the mutation analysis software MutaGene.41 It is 

noteworthy to mention that COSMIC and Dbsnp utilize 

distinct curation processes to classify each mutation as an 

SNP. 

As described in the section on findings, these results 

demonstrate that PhiDsc's predictions have the capacity to 

influence the structure and function of proteins by inferring 

the stabilising effect of point mutations using a variety of 

concepts. Nevertheless, additional experimental verification 

is essential in order to clarify the precise consequences of 

undetected mutations. 

PHIDSC provided outcomes pertaining to particular 

hotspots of HRAS and RhoA that have been previously 

identified in cancer. These hotspots comprised residues 12, 

13, and 117 out of the 12 predictions for HRAS, and residue 

34 out of the 11 predictions for RhoA. The utility of 

PHIDSC goes beyond oncogenes; it can also detect functional 

mutations in tumor suppressor genes or any other protein 

family, as long as there are a significant number of members, 

even if the validation proteins selected are oncogenic. The 

utilized mutation profile data is deemed adequate and 

dependable. 

This method has, nevertheless, two constraints: protein 

families consisting of a small number of members and the 

lack of a three-dimensional protein structure. In order to 

overcome these constraints, it is intended that a forthcoming 

tool update will prioritize functional protein domains over 

the entire protein. Additionally, the alignment comparison 

will incorporate the projected three-dimensional structure of 

the protein. 

 

Conclusion 

The demonstrated method stands out for its ability to 

enhance our understanding of proteins within the same 

family, particularly shedding light on the mechanism by 

which hotspot mutations propagate—a fact that has received 

relatively limited attention in prior research. Application of 

this approach to two distinct protein subfamilies (HRas and 

RhoA) successfully extracted several well-established hotspot 

mutations. 

Nevertheless, it is imperative to acknowledge certain 

limitations. The method heavily relies on the mutation 

profile of the family's proteins, demanding a comprehensive 

dataset for more precise results. Additionally, refinement is 

needed to ensure the accuracy of the alignment method. 

When comparing alternative alignment methods, divergent 

results were observed, with DALI consistently aligning with 

hotspots previously experimentally validated. 

Despite these challenges, the versatility of PHIDSC is 

noteworthy. Its capabilities extend beyond oncogenes, offering 

the potential to identify functional mutations in protein types 

with substantial family sizes, including tumor suppressor 

genes. The robustness of the approach is fortified by the 

accurate and exhaustive utilization of mutation profile data. 

Continual research efforts are dedicated to method 

improvement. This includes integrating anticipated structural 

models into alignment methodologies, with the aim of 

conducting a comparative analysis to determine the most 

efficient approach. Furthermore, the evaluation of protein 

domains, as opposed to entire proteins, is suggested to 

enhance alignment precision and generate more dependable 

outcomes. These proposed enhancements underscore a 

commitment to ongoing progress and innovation in the 

pursuit of precise identification of functional mutations. 
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