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Introduction  

Various environmental agents have negative effects on the 

growth and development of the plants and ultimately lead to 

decrease in final yield performance in plants.1 Salinity, heat, 

cold, and drought stresses are the most important abiotic 

stresses affecting plant growth.2 Annually, environmental 

stresses can reduce crop yield production from 50 to 70 

percent.3 During growth and differential stages of a plant’s 

life, the seedling stage is one of the most vital phases 

influencing many plants population features such as size and 

genetic variations.4 The seedling stage is one of the most 

sensitive growth stages to abiotic stresses and the occurrence 

of abiotic stresses at this stage will lead to decreased plant 

yield.5 Therefore, it is important for scientists to acquire 

more information about the response of plants to abiotic 

stresses in the seedling stage. 

Generally, response to abiotic stresses at the cellular, 

molecular, and whole plant levels are so complicated.6 These 

complexities come from the nature of interactions between 

stress agents and internal factors of plants.7 Moreover, 

tolerance mechanisms to abiotic stresses are a complicated 

phenomenon because many of the physiological and 

molecular signaling pathways are active in sensing and 

responding to these stresses.8 

One of the most important methods of molecular genetics 

helping to better comprehend the tolerance mechanisms of 

the plants in response to abiotic stresses is the use of 

transcriptome analysis and next-generation sequencing 

(NGS) technologies.9 These molecular genetics methods 

provide valuable insights into the gene expression patterns 

and molecular processes. involved in plant responses to 

stress conditions. By using computational biology approaches, 

we can identify hub genes and important pathways associated 

with abiotic stresses.10 These days, two computational 

biology approaches, namely meta-analysis and WGCNA, are 

Abstract 

Introduction: Abiotic limitations, like water deficit, high temperature, salinity, and cold are some of the main barrier agents to plant growth 

throughout the world. To obtain a comprehensive view of a plant’s response to abiotic stresses, we applied the robust bioinformatics approaches 

that including the integration of meta-analysis, weighted gene co-expression network analysis (WGCNA), and machine learning. 

Materials and Methods: In this paper, 32 samples from four different stresses were chosen for analysis. Cross-platform combination method was 

used to conduct meta-analysis. To find gene co-expression modules related to stress conditions WGCNA analysis was performed. Machine 

learning methods were applied to validate the most important hub genes. 

Results: Meta-analysis detected 275 differential expression genes (DEGs) and WGCNA showed 28 distinct modules under those stresses. Seven 

potential hub genes (At1g07430 (HAI2), At5g52300 (LTI65), At1g60190 (PUB19), At5g50360, At1g77120 (ADH1), At1g56600 (GolS2), and 

At5g57050 were detected by network analysis and validated by machine learning methods. These genes are involved in different pathways of 

cellular response to abiotic stresses. 

Conclusions: Analysis indicates that among the hub genes, At5g50360 was identified as a novel candidate gene. As such, the At5g50360 can be 

used in plant breeding programs for the development of abiotic stress-tolerant crops. 

Keywords: Abiotic Stress, Machine Learning, Meta-analysis, Weighted Correlation Network Analysis, Gene Expression 

Citation: Karimifard A, Saidi A, Tohidfar M, Saxena A. Identification of Key Responsive Genes to some Abiotic Stresses in Arabidopsis Thaliana 

at the Seedling Stage based on Coupling Computational Biology Methods and Machine Learning. J Appl Biotechnol Rep. 2023;10(3):1079-1090. 

doi:10.30491/JABR.2023.388345.1611 

https://doi.org/10.30491/JABR.2023.388345.1611
mailto:abbas.saidi@gmail.com
mailto:gtohidfar@yahoo.com
https://doi.org/10.30491/JABR.2023.388345.1611
https://www.orcid.org/0000-0002-0175-7406
https://www.orcid.org/5389-6721-0001-0000
https://www.orcid.org/0000-0002-6496-5018


http://www.biotechrep.ir 

Identification of Key Responsive Genes  

 

 J Appl Biotechnol Rep, Volume 10, Issue 3, 2023  |  1080 

widely used by researchers to get information at the level of 

transcriptome of plants facing abiotic stresses.11 Over the 

past decade, many scientists have been taking advantage of 

microarray technology. Merging of several microarray 

datasets (meta-analysis) is a typical way to improve gene 

selection.12 Increasing the number of samples boosts the 

statistical power for acquiring a more meticulous estimate of 

gene expression collection.13 Meta-analysis of microarray 

data is an efficient bioinformatics method to integrate 

multiple gene expression datasets.14 By employing a meta-

analysis approach, we can identify key responsive genes 

involved in metabolic and molecular pathways of abiotic 

stresses, so that these hub genes may be utilized in plant 

breeding programs for improving tolerance to stresses.15 

Meta-analysis have been employed by several research 

teams for identification of DEGs in response to abiotic 

stresses in plants.16,17 

Despite the importance of identifying DEGs in plant 

responses to environmental stresses through meta-analysis, 

the relationships among these genes are yet to be identified. 

Therefore, it is necessary to employ a method to bridge this 

gap and explore the interplay among these genes. WGCNA 

is a considerable system biology method that recognizes 

gene or protein functions and discovers correlation pattern 

among genes.18 This is a helpful method for the recognition 

of the module’s genes and the distinguishing of potential key 

genes. Nowadays, WGCNA is widely used to identify 

abiotic-responsive genes in Arabidopsis, rice, soybean, 

maize, tomato and many other plants.19,20  

Machine learning (ML), as a distinct branch of artificial 

intelligence, empowers systems to learn and significantly 

boost their predictive capabilities by leveraging training data 

and accumulated experiences. Recently, the application of 

machine learning in biology is increasing.21 Lately, researchers 

are extensively utilizing machine learning algorithms at the 

level of genomics (for DNA sequence analysis),22 transcriptomics 

(gene expression profiling analysis by XGBoost algorithm),23 

and proteomics (i.e., sequence-based prediction of protein-

protein interaction analysis).24 Machine learning plays a 

significant role in plant biology, particularly in the 

identification of hub genes under abiotic stresses. Feature 

selection is recognized as an effective machine learning 

algorithm, and extensively utilized by researchers to identify 

significant genes from a given set of genes. Among them, 

three different algorithms of feature selection methods, 

namely chi-square test, random forest, and SVM-RFE (support 

vector Machine-Recursive Feature Elimination), are highly 

recommended for reducing dimensionality and performing 

feature selection.25 SVM-RFE, an effective feature selection 

method, relies on the power of support vector machines to 

accurately identify and prioritize relevant features. The 

SVM-RFE technique was utilized to train an SVM model, 

enabling the determination of the weight for each gene. 

Subsequently, genes with the lowest weight were iteratively 

identified and removed from the feature set. This algorithm's 

exceptional performance has led to its extensive utilization 

across numerous domains within the field of biology. The 

random forest algorithm has been widely adopted by 

researchers for feature selection and classification purposes.26 

To reduce dimensionality and select the most relevant genes, 

the chi-square algorithm is another important feature 

selection method that has been employed by researchers.27 

In this paper, we integrated meta-analysis of transcriptome 

data from four diverse abiotic stresses (salinity, heat, cold, 

and drought) with WGCNA to identify important genes and 

modules involved in plant response to these stresses. To 

enhance the efficiency of hub gene selection, we applied 

three different feature selection algorithms. 

 

Materials and Methods 

Selection of Expression Data and Preprocessing 

We used GEO (Gene Expression Omnibus) database for 

choosing expression profiles in Arabidopsis (Table 1). The 

dataset consisted of 32 samples, with 16 samples each 

collected under stress and normal conditions. These samples 

were obtained from seven studies investigating four different 

types of stresses.  For each individual dataset, data was 

normalized by quantile normalization algorithm and then the 

log2 transformation was carried out. For constructing an 

expression matrix, we merged all gene expression profiles 

by Gene Symbol. Batch effects were eliminated by using 

ComBat function in SVA package.28 

 
Table 1. Characterization of the Individual Samples Used in this Study 

GEO number 
Sample groups 

(stress: normal) 
Platform Plant Tissue Type of Stress References 

GSE39236 3:3 Affymetrix (GPL198) Arabidopsis Seedling Salt stress [29] 

GSE41963 2:2 Affymetrix (GPL198) Arabidopsis Seedling Salt stress [30] 

GSE44053 2:2 Affymetrix (GPL198)  Arabidopsis Seedling Heat stress [31] 

GSE56642 3:3 Affymetrix (GPL198) Arabidopsis Seedling Drought stress [32] 

GSE106635 2:2 Affymetrix (GPL198) Arabidopsis Seedling Cold stress [33] 

GSE109283 2:2 Affymetrix (GPL198) Arabidopsis Seedling Salt stress [34] 

GSE112389 2:2 Affymetrix (GPL198) Arabidopsis Seedling Salt stress [35] 

 

Identification of Differential Genes Expression 

The limma package36 in R was utilized for the identification 

of differentially expressed genes (DEGs). 

Construction of WGCNA Network 

“WGCNA” package was used for constructing co-expression 

network37 to find the relationships among genes. To decrease 
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background noise, we only chose genes that were expressed 

differentially in the samples, and genes with similar 

expression were deleted. A median absolute deviation 

(MAD) index for every gene, as a potent measure of 

variability, was calculated, allowing to rank the genes with 

4500 genes being selected for further analysis. 

To detect missing values and outliers, we used 

goodSamplesGenes function in WGCNA package and 

flashClust. To construct the network and adjacency matrix 

following parameters (cor = bicor, and type = signed hybrid) 

were used. The pickSoftThreshold function was used to 

determine the β parameter, an important step in WGCNA 

analysis, where it accentuates strong correlation between 

genes and also penalizes weak correlation. Other important 

WGCNA indexes such as module eigengene and module-

trait relationships were performed. In candidate modules, we 

considered potential hub genes with two parameters:  gene 

significance (GS)>0.2 and module membership (MM)>0.8. 

 

Functional Analysis  

Common genes between DEGs and WGCNA were chosen 

for gene ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses. The 

GO and KEGG analyses were conducted using the ShinyGo 

tool38 (http://bioinformatics.sdstate.edu/go/). For both analyses, 

enriched terms and pathways were considered based on false 

discovery rate (FDR) adjusted p-values<0.05. 

 

Protein-protein Interaction (PPI) Analysis 

To investigate the protein-protein interactions, common 

proteins between DEGs and WGCNA were selected as an 

input data for string11.0 website (https://string-db.org/). To 

construct protein-protein interaction (PPI) networks, 

interactions with a score greater than 0.4 were considered for 

inclusion. To visualize the PPI network, Cytoscape (3.8.2) 

software was used. For ranking nodes in a network, 

Cytoscape plugin cytoHubba (Degree and MCC methods) 

was used. Common genes obtained from each of the 

methods of cytoHubba plugin were considered as hub genes. 

 

Validation of Potential Hub Genes by Using Feature 

Selection Algorithms 

Feature selection algorithms offer several advantages when 

applied to biological datasets. These include dimensional 

reduction, enhanced efficiency in selecting hub genes, 

improved interpretability of results, and identification of a 

subset of genes associated with specific biological processes 

and pathways. Due to these advantages, these algorithms 

have been widely utilized to leverage their benefits in 

biological research. Three different feature selection 

methods were applied to validate the potential hub genes 

(i.e., common genes between DEGs from meta-analysis and 

hub genes from the candidate module from WGCNA). To 

apply feature selection methods, we categorized our data 

into two distinct groups, consisting of independent variables 

(common genes) and a dependent variable representing 

binary classes for stress and normal conditions. Considering 

that the common genes originate from two robust 

bioinformatics approaches, it has been observed that a 

substantial portion of these genes demonstrate the potential 

to be classified as hub genes. In order to identify and 

validate these hub genes, the top 30 genes were selected 

from each analysis, including MCC, Degree, SVM-RFE, 

Random Forest, and Chi-square. This selection comprised 

both the hub genes and the genes playing a significant role in 

the response pathways to abiotic stresses. We utilized the 

SelectKBest function from scikit-learn, which employs the 

chi2 scoring function, to identify the K features with the 

highest chi-square values. The k parameter was set to 30 to 

select top 30 features with the highest scores.  Given the 

nonlinear nature of non-biological data, the SVM-RFE 

algorithm was performed with radial basis function kernel. 

The SVM-RFE and chi-square methods were performed by 

sklearn library in Python. Random forest algorithm was 

conducted by using RandomForest package in R. All the 

data and codes used for implementing machine learning 

methods on the Figshear website have been uploaded 

(https://doi.org/10.6084/m9.figshare.23498246). 

 

Results 

Data Quality Control 

Primary transcriptome data analysis, including quality 

control (QC) and normalization, was performed on each 

dataset, so all samples were normalized. To ensure batch 

effect removal, principal components analysis (PCA) and 

boxplot were carried out (Figure 1). Figure 1a clearly 

demonstrates the presence of batch effects (BE) in our 

datasets, which can introduce confounding factors and 

impact the interpretation of results. To address this issue, we 

applied the ComBat algorithm from the SVA package38 to 

remove the batch effects. The effectiveness of this correction 

method is evident in Figure 1b, where the two distinctive 

groups are clearly distinguishable after the removal of batch 

effects. 

Furthermore, after the batch effects were successfully 

removed, the boxplot analysis (Figure 1c, d) revealed that 

the median lines of gene expression levels are positioned 

closely together across all the samples. This indicates that 

the removal of batch effects has improved the consistency 

and comparability of gene expression measurements, 

reducing the potential bias introduced by batch effects. 

 

Identification of DEGs by Meta-analysis 

Cross platform normalization method was used to perform 

meta-analysis. By using this approach, 167 up-regulated genes 

(“LogFC≥1, Adjusted p.value≤0.05”) and 108 down-regulated  
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Figure 1. a) Plot of first two principal components: (left panel) visualizing data before; b) after BE removal (right panel); c) Boxplot of samples before 

BE removal, and d) boxplot of samples after BE removal. 

 

genes (“LogFC≤-1, Adjusted p.value≤0.05”) were determined 

(Supplementary File 1). The At1g16850 and At5g20630 

were defined as genes with the highest and the lowest 

values, respectively, (Figure 2). 

Constructing of Weighted Co-expression Network, 

Recognition Candidate Modules and Potential Hub Genes 

WGCNA analysis was performed on a merged gene expression 

of seven datasets that were normalized with its batch effect  
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Figure 2. Volcano Plot of DEGs under Normal and Stress Conditions at 

Seedling Stage in Arabidopsis. 

 

removed. To identify outliers, we clustered the samples. As 

shown in figure 3a, there is no outlier in our data. Moreover, 

all the samples under normal and stress conditions were 

classified into separate groups. 

One of the critical stages for performing WGCNA analysis 

is determining the soft threshold (power β). In order to fulfill 

the scale-free topology feature of the WGCNA network, 

determining the power β is vital. Therefore, we considered 9 

as the soft threshold index (β parameter) by fit index greater 

than 0.8 (Figure 3b). Based on the findings in Figure 3c, 

opting for a threshold of 9 for beta power results in the least 

decline in mean connectivity. 

By using the parameter β and gene expression matrix, 

adjacency matrix was generated. Lastly, two indexes namely 

average hierarchical clustering and dynamic tree were 

utilized to identify co-expression modules (Figure 3e). One 

of the WGCNA framework's advantages is the detection of 

the association between considered trait (normal and stress 

conditions) and gene expression profile. The relationship 

between considered trait and module eigengenes was 

obtained through the pearson’s correlation coefficient. By 

analyzing correlation of module eigengenes with external 

traits (stress and normal conditions), two modules (black and 

blue) were determined as modules with the most significant 

associations with the trait under abiotic stress condition 

(Figure 3f). 

As Shown in Figures 3g and 3h, blue (r = 0.96, p = [3e-

18]) and black (r = 0.72, p = [3e-06]) modules have a highly 

positive correlation with the external trait (a stress 

condition), thus potential hub genes based on gene 

significance greater than 0.2 and module membership 

greater than 0.8 from these two modules were chosen 

(Figure 3g, h). 

Potential hub genes in key modules (blue and black 

modules) were selected based on the two criteria mentioned 

earlier. A total of 225 genes, 119 genes in the blue modules 

and 106 genes in the black modules, were identified as 

potential hub genes by WGCNA (Supplementary File 2). 

 

Identification of Common Genes between Meta-analysis 

and WGCNA 

We intersected 275 DEGs from meta-analysis with 225 

potential hub genes from two key modules, which yielded 98 

genes (Figure 4) (Supplementary File 3). 

 

Functional Enrichment Analysis of Common Genes 

between Meta-analysis and WGCNA 

After conducting a comprehensive analysis, it was concluded 

that no significant enriched terms were discovered in relation 

to the cellular components. Therefore, gene ontology, 

including biological process (BP), molecular function (MF), 

and KEGG analysis were just performed on the above-

mentioned 98 common genes (Figure 5). Totally, in gene 

ontology annotation, 18 BP terms, 11 MF terms, and 4 

KEGG terms were detected. 

 

Protein-protein Interaction (PPI) Analysis of Common 

Genes between Meta-analysis and WGCNA 

The 98 common genes were selected for constructing PPI 

network. The string database was used for generating the 

network (Figure 6). The cytoscape (3.7.2) was used to 

visualize the network. By using the Degree and MCC 

indexes of cytoHubba (plugin Cytoscape), we restricted our 

hub genes into two separate categories of 30 genes 

(Supplementary File 4). These genes were used to find key 

genes along with other genes obtained from machine 

learning methods. 

 

Identification of Key Genes by Machine Learning 

Methods 

To identify the most significant genes among 98 common 

genes, we applied three different algorithms of machine 

learning. Firstly, random forest (RF) algorithms were 

applied, followed by calculation of variable significance 

inside the RF analysis based on the Gini index, which is a 

measurement of variance for a given variable.40 In this 

algorithm, Mean Decrease Gini (MDG) is one of the crucial 

criteria for scoring the genes. We used it for selecting the 

genes with top-level scores (Figure 7). The top 30 genes 

obtained by this method are listed in the Supplementary File 

4. As shown in Figure 7, the most remarkable gene 

(At1g60190) is located at the highest point of the graph.  

Another algorithm of machine learning that we applied for 

choosing the most notable genes was SVM-RFE. Based on 

this method, the top 30 genes are listed in the Supplementary 

File 4.  

Chi-square method was another important algorithm of 

machine learning that was used for selecting significant 

genes. The top 30 significant genes were defined by this 

method and are listed in the Supplementary File 4. 
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Figure 3. WGCNA Analysis of Abiotic Stress Samples and Normal Samples. a) Sample clustering with their external traits (normal and stress 

condition) and heatmap for 32 samples; b) Analysis of the scale-free for different soft thresholding powers, (c) Analysis of the mean connectivity at 

different soft thresholding power; d) Check scale free topology with β = 9; e) A cluster dendrogram of genes based on the measurement of 

dissimilarity (1-TOM); f) Module-trait relationship, this plot shows correlation between each module with external traits. Module eigengene were 

listed on y-axis and the two different conditions were placed in each column. Degree of correlation and p-value were also displayed in each cell; g, 

h) Scatter plots between gene significance and module membership in black and blue modules. 
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Figure 4. Venny Diagram between DEGs from Meta-analysis and WGCNA. 

 

 

 

 
Figure 5. Gene Ontology (GO) Analysis and KEGG Pathway of 98 Common Genes. a) GO of biological process; b) GO of molecular function, and 

c) KEGG pathways. In this plot, the color of circles represents the degree of enrichment, Reder colors show higher enrichment and the size of circles 

represent of the number of genes. 

 

To detect the final key genes, we intersected the outcome of 

the three machine learning algorithms (SVM-RFE, RF, and 

Chi-square) with the Degree and MCC methods using venny 

diagram (Figure 8). Seven key genes including At1g07430 

(HAI2), At5g52300 (LTI65), At1g60190 (PUB19), At5g50360, 

At1g77120 (ADH1), At1g56600 (GolS2), and At5g57050 

(ABI2) were detected. We also showed these genes in the 

PPI network (Figure 8). 

Gene ontology and KEGG analysis of these seven genes 

(Figure 9) indicate that they are the most important biological 

processes involved in responses to abscisic acid, alcohol, 

water deprivation, lipid, acid chemical, osmotic stress, and 

hormones. Moreover, MAPK signaling pathway and plant 

hormones signal transduction were detected as the most 

enriched KEGG terms. 

Discussion 

In this study, we implemented an integrated bioinformatic 

approach to identify important genes responsive to abiotic 

stresses. To accomplish this goal, we performed a meta-

analysis of microarray data, which is a robust computational 

method widely used in this context. To perform meta-

analysis, there are two separate approaches for analysis of 

multiple microarray datasets obtained from independent 

studies namely “integrative analysis”40 and cross-platform 

normalization (also named “merging”). In this paper, we 

used a “merging” approach for analyzing the data. Meta-

analysis was performed on seven datasets which included 32 

samples. We identified 275 DEGs (between stress and 

normal condition) in our study that among, where the 167 

(60 percent) upregulated and 108 (40 percent) downregulated  

WGCNA Meta-analysis 
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Figure 6. The PPI Network of 98 Common Genes. The red node represents key genes [At1g07430 (HAI2), At5g52300 (LTI65), At1g60190 (PUB19), 

At5g50360, At1g77120 (ADH1), At1g56600 (GolS2), and At5g57050 (ABI2)] that were validated by 3 different ML methods (SVM-RFE, Random 

Forest and Chi square) and two criteria cytoHubba (Degree and MCC). 

 

 

 
 

Figure 7. Top 30 Ranked Genes for 98 Common Genes. 

 

genes were selected. The At1g16850, a transmembrane 

protein having an important role in response to salt and cold 

stresses, had the highest logFC at the seedling stage.42 The 

lowest value (LogFC = -1.91) of down-regulated gene belonged 

to At5g20630 (GER3) (Figure 2).  

To find module eigengene and genes related to the considered 

trait, WGCNA workflow was applied on the gene expression 

matrix of 32 samples. In this analysis, the genes with the 

same expression pattern were placed in the similar modules. 

As shown in Figure 5a, after combining modules with the 

same co-expression patterns, 28 various modules were 

diagnosed. The genes belonging to the gray module are not 

co-expressed. The blue and black modules have highly 

positive correlation with the considered trait (stress 

condition). Respectively, there are 277 and 440 genes in 

black and blue modules (supplementary 2). After applying 

modules screening based on gene significance and module 

membership, the number of genes in black and blue modules 

were reduced to 106 and 119, respectively. 

To better understand tolerance mechanism in plants under  

Top 30-genes importance 
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Figure 8. Venny Diagram between three Different Machine Learning Methods with Two Criteria of cytoHubba. 

 

 

 

 

 

 

 

 

 

Figure 9. Functional Analysis on Seven Hub Genes. a) Biological process; b) KEGG pathway. 

 

abiotic stresses at seedling stage different types of analysis 

such as GO, KEGG, and PPI were conducted on the common 

genes. A total of 98 genes were selected from meta-analysis 

of DEGs and candidate modules. 

In particular, the most important BP term groups was related 

to the response of water deprivation with 30 genes. 

Another important BP term was a response to acid chemical. 

Responses to oxygen−containing compound, abscisic acid, 

and alcohol were other important BP processes (Figure 8a). 

As expected, the most BP gene groups were involved in the 

cellular and molecular response to salt and water stress 

conditions and also in signaling pathways such as response 

to hormone and abscisic acid. In addition, the analysis of the 

molecular function (MF) group showed that the genes were 

chiefly associated with sucrose synthase activity (Figure 8b). 

Among the four identified groups in KEGG pathways, the 

only significant term was “MAPK signaling pathway” 

(Figure 8c). The MAPK pathway is one of the most 

important components in plant response to water, cold, salt, 

and heat stresses.43 

In MF categories, the main term was sucrose synthase 

activity. Sucrose synthase is the key enzyme involved in 

biosynthesis of sucrose. The activity of sucrose synthase is 

increased under osmotic and water stresses.44 Based on 

previous research, the level of soluble sugars such as sucrose 

is increased in cells under abiotic stresses.45 Sucrose has a 

dual function, where not only acts as an energy substrate but 

also as a signaling molecule required for growth and 

development of plants.46 Sucrose is synthesized by sucrose 

phosphate synthase and has a critical role in abiotic 

stresses.47 

We have identified two sets of 30 top genes by using 

degree and MCC methods in cytoscape. To validate the 

results of PPI analysis, we applied machine learning 

algorithms on common genes. Machine learning has a 

special place in almost all sciences, especially in biological 

sciences. In 2011, SVM-RFE was carried out in Arabidopsis 

to predict drought-resistant genes.48 Tahmasbi et al.,49 

integrated meta-analysis and machine learning methods for 

investigating the transcriptomic response to water stress in 

Populus. The role of novel water deficit specific genes was 

identified by using machine learning methods in Oryza 

sativa.50 

By using three methods of machine learning algorithms, 

three sets of 10 top genes were obtained. Seven key 

responsive genes including At1g07430 (HAI2), At5g52300 
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(LTI65), At1g60190 (PUB19), At5g50360, At1g77120 

(ADH1), At1g56600 (GolS2), and At5g57050 (ABI2) were 

obtained by intersection of these five different methods 

(Figure 12). It was reported that the level of HAI2 

expression during drought stress was increased and it is one 

of the positive regulators of abscisic acid (ABA), involved in 

cell signaling transduction.51 The LTI65 is an ABA-

dependent protein induced by low-temperature and drought 

stress.52 The At5g52300 encodes desiccation-induced protein 

involved in protecting cells from stress damages.53 The 

At1g60190 acts as a negative regulator of abscisic acid 

during drought stress.54 The At1g77120 has important role 

during abiotic and biotic stresses.55 The At1g56600 (GolS2) 

encodes galactinol synthase 2 protein involved in the 

biosynthesis of raffinose family oligosaccharides from UDP-

galactose. The GolS2 has critical role in plant cell’s response 

to water and salt stresses.56 The At5g57050 encodes protein 

phosphatase 2C family protein (ABI2) and has a crucial role 

in ABA-signal transduction during abiotic stresses.57 

Another key gene that we detected in our study was the 

At5g50360 (Von Willebrand factor A domain protein) which 

belongs to the blue modules. Although, a positive correlation 

between abscisic acid treatment and the expression level of 

the At5g50360 has been established however, the function of 

this gene is yet to be identified.58 Our findings provide 

valuable insights into the fundamental mechanisms 

associated with abiotic stress responses, which can be 

leveraged for future genetic enhancement and breeding 

programs in plants. 

 

Conclusion 

In conclusion, based on our findings, we are suggesting a 

new potential hub gene At5g50360 which may play a critical 

role in many of the abiotic stress tolerance mechanisms in 

Arabidopsis. and it is highly recommended to conduct 

additional genetic studies to characterize its function. As 

such, this gene can be considered as an appropriate candidate 

for increasing abiotic tolerance in crop improvement 

programs. 
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