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Introduction  

Breast cancer is the most common malignancy in women 

and the second leading cause of cancer deaths, disturbing 2.1 

million women every year.1,2 Its prevalence is growing in 

Iran, which is known as the fifth leading cause of death, and 

the average age of onset in Iranian women is 45 years, while 

this figure is at least ten years higher in other countries.3,4 

Radiotherapy is a standard, and effective treatment modality 

for breast cancer.5,6 The most important target of ionizing 

radiation in cells is the structure of DNA, so the DNA repair 

pathways are one of the major targets of radiotherapy. 

Homologous recombination and non-homologous end joining 

(NHEJ) are the main DNA repair pathways for repairing 

DNA strand breaks.7,8 Non-coding RNAs are a diverse group 

of functional RNA molecules that are not translated into 

proteins, which can be divided into small (<200 nt) ncRNAs, 

including microRNAs (miRNAs), and long (>200 nt) ncRNAs 

(lncRNAs).9-11 

The length of lncRNAs varies from 200 nucleotides to less 

than 100 kb12,13 and important biological functions have 

been defined for them. For example, lncRNAs are involved 

in tumorigenesis, invasion, metastasis, and angiogenesis.14,15 

In recent years, several lncRNAs have been shown to 

participate in DNA repair pathways, such as the ATM, ATR, 

and p53 pathways, with both oncogenic function and tumor 

suppressor function as regulators.15,16 

DANCR or ANCR is an 855 nucleotide lncRNA located on 

chromosome 4.17-19 DANCR can be involved in DNA repair 

because of its effect on the EZH2 factor, which is a part of 

the PRC2 complex20,21 and is a regulator of key double-

stranded DNA repair proteins, including RAD51 and p53, 

and is associated with altered responses to DNA damage. 

This lncRNA interacts with EZH2, reducing its stability and 

protein levels in breast cancer cell lines, and causing its 

degradation.18,22,23 

TUG1 is a long non-coding RNA of 7.1 kb, located on 

chromosome 22q1224 and identified among 39 lncRNAs 

induced as p53-dependent after DNA damage25 and observed 

to be transcriptionally activated after DNA damage26 and is 

effective in Multiple cancers acting as an oncogene or tumor 

suppressor.26, 27  

Based on their important functions in the DNA repair 

pathway and in regulating radiosensitivity or resistance in 
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different cancers, in this study expression level of DANCR 

and TUG1 lncRNAs. was evaluated in MCF-7 and MDA-

MB- 231 cell lines before and after irradiation with different 

doses of X-rays. 

 

Materials and Methods 

Cell Culture 

MCF7 and MDA-MB- 231 breast cancer cell lines were 

obtained from the Pasteur Institute of Iran (Tehran, Iran). 

Cells were cultured in DMEM (Gibco) medium supplemented 

with 1% antibiotics, including penicillin (100 IU/ml) plus 

streptomycin (100 μg/ml) (PAN-Biotech GmbH) and 10% 

fetal bovine serum (FBS) (Bio-Idea, Iran), under the 

condition of 5% CO2 atmosphere, 95% of humidity, and 

temperature of 37 °C.  All the experiments were done when 

the cells reached the logarithmic growth state. 

 

Irradiation 

For irradiation, (3 × 106) cells were plated in 75 cm2 culture 

flasks. When cells reached to approximately 70% confluence, 

the medium was renewed, and cells were irradiated using a 

six megaelectron volts linear accelerator (LINAC) (Elekta, 

Sweden) with a dose of 2, 4, and 8 Gy. Also, there was a 

sham control flask kept at the same condition without being 

irradiated. For each dose of radiation and control one, we 

had two flasks; one group of flasks was incubated for the 

next 24 h, and one group was incubated for the next 48 h. 

Upon incubation completion, cells were trypsinized and 

harvested. This procedure was repeated three times 

independently. 

 

Total RNA Extraction and Quality Control 

Total RNA from the cell lines was isolated using TRIzol 

(Geneall, South Korea) reagent according to the manufacturer’s 

instructions. Nanodrop and agarose gel electrophoresis were 

utilized to check the purity, concentration, and integrity of 

RNA. The RNA solution was stored at -80 °C for further 

use. 

 

DNase Treatment  

To remove any probable genomic DNA contamination 

before cDNA synthesis, the extracted RNAs were treated 

with a DNase1 enzyme kit (Yektatajhiz, Tehran, Iran), 

according to the manufacturer’s instructions. 

 

RT-PCR and Primer Designing 

cDNA synthesis was performed with a cDNA synthesis kit 

(Beta Bayern, Germany) according to the manufacturer’s 

instructions. For cDNA synthesis, random hexamer primers 

were used. Also, for the qRT-PCR experiment, specific 

forward and reverse primers were designed with primer 3, 

oligo 7, and oligo analyzer software. Then primers were 

blasted with NCBI primer blast. The primer sequences used 

in this study are shown in the Table 1. 

 
Table 1. The Sequences of the Specific Primers 

Primer Sequences Forward Reverse 

GAPDH TGGATGCCACTGGCGTCTTC TTGCTGATGATGATCTTGAGGCTGT 

DANCR TGACGCGCCACTATGTAGC ACTTCCGCAGACGTAAGAGAC 

TUG1 GCTCTCTTTACTGAGGGTGCTT GGATCTGTCAAGTCTCAATGTTGG 

 
Evaluation of LncRNA Levels Using Quantitative Real-

Time RT-PCR 

The qPCR was performed on Applied Biosystems step one 

plus Real-Time PCR System with SYBR green method using 

high Rox amplicon master mix by adopting the 2−ΔΔct 

method. Glyceraldehyde phosphate dehydrogenase (GAPDH) 

was used as an endogenous reference. The lncRNA 

expression levels were detected by quantitative real-time 

PCR with the primes, as shown in Table 1. Each Real-Time 

PCR experiment was repeated two times for each lncRNA. 

 

Statistical Analysis 

All statistical analyses and figure creation were performed 

using GraphPad Prism 8 software. The one-way ANOVA 

test was used to compare differences in DANCR and TUG1 

expression after receiving different doses of radiation 

compared to the control sample. The independent t-test was 

used to compare between MCF-7 and MDA-MB-231 cell 

lines for each dose of radiation. 

Results 

DANCR LncRNA Expression Changes in Response to 

Radiation in the MCF-7 Cell Line 

As shown in Figure 1 (A, B), irradiation increased the 

expression of DANCR lncRNA in the MCF-7 cell line after 

24 h compared to the control sample; this upregulation 

peaked at 2 Gy irradiation. The increase after 2 Gy 

irradiation was more significant than the observed increase 

after 4 Gy. Also, receiving 8 Gy irradiation decreased the 

expression compared to 2 and 4 Gy.  

Measuring this lncRNA's expression level after 48 h 

showed a dose dependent decrease in its expression after 

receiving 2, 4, and 8 Gy irradiation. This decrease was more 

pronounced at 8 Gy. The most significant decrease in 

expression levels was observed for doses 4 and 8 Gy. Also, 

this decrease between 2 and 4 Gy and 2 and 8 Gy was 

significant (p<0.05). 

 

DANCR LncRNA Expression Changes in Response to 
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Radiation in the MDA-MB-231 Cell Line 

As shown in Figure 1 (C, D), expression changes of DANCR 

in the MDA-MB-231 cell line, indicates similar expression 

pattern with MCF-7 cells after 24 h. It means there is a 

significant increase after receiving 2 and 4 Gy irradiation 

compared to the control without receiving any radiation. 

This increase peaked at 2 Gy irradiation and was more 

significant than the observed increase at 4 Gy. Also, the 

expression level of DANCR decreased after 8 Gy compared 

to 2 and 4 Gy. There was a significant upregulation after 4 

Gy irradiation and at 48 h incubation time compared to those 

recieved 2 and 8 Gy radiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Expression Changes of DANCR LncRNA in Response to Different Doses of Radiation in the MCF-7 Cell Line after 24 h (A) and 48 h 

(B). And in the MDA-MB-231 Cell Line after 24 h (C) and 48 h (D). *p<0.05; **p<0.01, ***p<0.001. 

 

A Comparison Between the Relative Expression of DANCR 

LncRNA in MCF-7 and MDA-MB-231 Cell Lines 

As demonstrated in Figure 2, the relative expression of 

DANCR lncRNA in the MDA-MB-231 compared with 

MCF-7 cell lines was significantly higher for both sampling 

times (24 and 48 h) for all doses of radiation. However, the 

expression level of DANCR was more pronounced at 48 h. 

 

LncRNA TUG1 Expression Changes in Response to 

Radiation in the MCF-7 Cell Line 

As shown in Figure 3 (A, B), the expression level of TUG1 

in the MCF-7 cells receiving 2, 4, and 8 Gy compared to the 

control without receiving any irradiation was measured 24 

and 48 h after irradiation. The results suggested that 24 h 

after irradiation, expression of this lncRNA was increased 

for doses of 4 and 8 Gy in MCF-7 cell lines. Also, there was 

a significant decrease in its expression after receiving 4 Gy 

compared to 2 Gy irradiation. 

 

LncRNA TUG1 Expression Changes in Response to 

Radiation in the MDA-MB-231 Cell Line 

Figure 3 (C, D) shows the expression level of TUG1 in the 

MDA-MB-231 cell line following receiving radiation doses 

of 2, 4, and 8 Gy compared to the control at 24 and 48 h 

post-irradiation incubation. The results demonstrated that 24 

h after irradiation, the expression of this lncRNA in 4 Gy in 

the MDA-MB-231 cell line was increased. Also, the 

expression in 4 Gy compared to 2 Gy was more significant, 

and then there was a significant decrease in 8 Gy compared 

to 4 Gy. The expression level TUG1 48 h after irradiation, 

increased significantly following 8 Gy compared to the 

control, 2 and 4 Gy irradiated cell. 
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Figure 2. A Comparison of the Relative Expressions of DANCR LncRNA between MCF-7 and MDA-MB-231 Cell Lines in each Radiation Dose after 

24 h and 48 h. *p<0.05; **p<0.01, ***p<0.001. 

 
A Comparison between the Relative Expressions of TUG1 

LncRNA in the MCF-7 and the MDA-MB-231 Cell Lines 

As demonstrated in Figure 4, 24 and 48 h after irradiation 

with different doses of X-rays, the expression of TUG1 in 

MCF-7 cell line increased significantly compared to MDA-

231 cell line. After 48 h post-irradiation with 8 Gy, its 

expression in the MDA-MB-231 cell line increased 

significantly compared to the MCF-7 cell line. 24 h after 

receiving radiation, the most differences between MCF-7 

and MDA-231 cell lines were observed at dose of 2 Gy. 48 h 

after irradiation, the most differences between the two cell 

lines were observed at 8 Gy. Also, it is shown that after 24 h, 

there are more differences in the expression level of TUG1 

between MCF-7 and MDA-MB-231 cell lines when 

receiving different doses of radiation. 

 

Discussion 

Cancer is known as one of the principal causes of death 

worldwide.28,29 Although radiotherapy is one of the major 

methods for cancer therapy, normal tissue toxicity and tumor 

recurrence are main limitations for proper treatment. 

Therefore, to solve this problem, the radiosensitivity of 

patients should be optimized.7,30,31 On the other hand, 

radiotherapy, in addition to destroying tumor cells, also 

affects healthy cells around the tumor and causes treatment-

related complications that can cause a different response in 

each patient.32,33 

The most important target for ionizing radiation in cells is 

DNA molecule which results in DNA damages, especially 

DNA double-strand breaks (DSBs).34,35 DSBs are thought to 

be the leading cause of cell death, and large-scale genomic 

changes result from DSB repair defects. So, they can create 

chromosomal instability directly associated with cancer 

progression.36 The two main pathways for DSBs repair are 

homologous recombination (HR) and non-homologous end 

junction (NHEJ).37 The studies suggested that response to  
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Figure 3. The Expression Changes of TUG1 LncRNA in Response to Different Doses of Radiation in the MCF-7 Cell Line after 24 h (A) and 48 h (B). 

And in the MDA-MB-231 cell line after 24 h (C) and 48 h (D). *p<0.05; **p<0.01, ***p<0.001. 

 

radiation treatment is modulated by cellular processes such 

as DNA damage repair. Thus, identifying markers playing a 

role in radioresistance and radiosensitivity is critical for 

detecting responsive patients and improving the outcome of 

radiotherapy.38-41 

Recently, it has been shown that ionizing radiation could 

change the expression pattern of non-coding RNAs (ncRNAs), 

including microRNAs and lncRNAs, whose expression levels 

can be determined by RT-PCR, NGS, and microarray.42,43 

Recent studies showed that lncRNAs were involved in DNA 

damage repair (DDR) machinery by sensing DNA damage, 

signal transduction, repairing damaged DNA, activating cell-

cycle checkpoints, and inducing apoptosis.44,45 

It was demonstrated that DANCR was overexpressed in 

many cancers, playing an oncogenic role. For breast cancer, 

both overexpression and down regulation were shown for 

DANCR.46-49 To date, there is no report regarding expression 

changes of DANCR in breast cancer cell lines in response to 

radiation. But in triple negative breast cancer, the upregulation 

of DANCR was demonstrated in cancerous tissues.47 

In the present study, it was shown that irradiation could 

increase the expression level of DANCR lncRNA in MCF-7 

and MDA-MB-231 cell lines after 24 and 48 h post-

irradiation. The most effective dose causing upregulation for 

DANCR was 2 and 4 Gy in both cell lines. Also, it was 

shown that the difference between these two cell lines after 

48 h was more evident compared to after 24 h from receiving 

radiation. 

Comparing DANCR expression changes between MCF-7 

and MDA-MB-231 cell lines suggest that 24 and 48 h after 

irradiation the expression level of DANCR in radioresistant 

MDA-MB-231 cell line was more significant than radiosensitive 

MCF-7 cell line. This result suggests the probable role of 

DNACR in breast cancer radioresistance. The pathways that 

this lncRNA play a role in the DNA repair system in 

response to radiation might be different. DANCR may cause 

repression of EZH2,50 a key regulator of double-stranded 

DNA repair proteins, including RAD51 and p53. Also, 

EZH2 is associated with altered responses to DNA damage.51 

In addition, in a study with nasopharyngeal carcinoma cells, 

it is shown that DANCR causes repression of PTEN,52 which 

plays an important role in the promotion of the DNA repair 

system.53 Moreover, the Ras/phosphoinositide 3-kinase 

(PI3K)/PTEN pathway is one of the activated pathways in 

breast cancer that cause radioresistance54 and DANCR plays 

a role in activating the PI3K/AKT pathway.49 In another  
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Figure 4. A Comparison between the Relative Expressions of TUG1 LncRNA between the MCF-7 and the MDA-MB-231 Cell Lines in each Dose of 

Radiation after 24 h and 48 h. *p<0.05; **p<0.01, ***p<0.001. 

 

study with melanoma, it was shown that DANCR could 

suppress miR-335, which plays a role in radiosensitivity of 

melanoma.55 

Regarding expression changes of DANCR under the effect 

of radiation, one study showed its role in proliferation and 

radiation resistance of nasopharyngeal carcinoma by 

increased expression level.52 

TUG1 is a lncRNA with oncogenic or tumor suppressor 

function in many cancers.26, 27 Recent studies have 

demonstrated that upregulation of TUG1 is presumably a 

predictor of survival in human cancer and is closely 

associated with increased tumor size, advanced pathological 

stage, and distant metastasis.56,57 It is shown that this 

lncRNA is activated upon DNA damage in a p53 dependent 

pathway and is regulated by p5358 or itself targets p53 via 

miRNAs.59 Since the tumor suppressor gene p53 regulates 

cellular processes after IR, its function in cancer cells 

closely relates to radiotherapeutic efficacy.60,61 As a target 

gene of p53, TUG1, by promoting cell cycle arrest and 

apoptosis by regulating some miRNAs, including miR-221, 

increases cell radiosensitivity.61 TUG1 has a suppressor 

function on miR-221, this miRNA plays role in promotion of 

DNA repair pathway and cause radioresistance.62,63 Also, it 

was shown that TUG1 could activate HMGB1,64 that plays 

role in DNA repair pathway65 cause radiosensitivity and is a 

radiosensitizer in breast cancer.66 

In prostate cancer it was shown that TUG1 represses 

SMCA1, a gene involved in radioresistance.67, 68 

Moreover, it was shown that similar to DANCR, TUG1 

could regulate EZH2,69 a key regulator of DNA damage 

response and also p53. 

It was shown that irradiation could increase its expression 

level of TUG1 in MCF-7 and MDA-MB-231 cell lines After 

24 and 48 h after irradiation. Doses of 2 and 8 Gy were the 

most effective dose causing upregulation in both cell lines. 

Moreover, for it was shown that the expression level of TUG1 
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after irradiation of both cell lines was more significant at 24 h 

sampling time compared to 48 h sampling time. 

To date, there is limited or no report regarding expression 

level of TUG1 in response to radiation in breast cancer, but a 

study done on breast cancer tissues showed that expression 

level of TUG1 was significantly down-regulated compared 

to corresponding normal tissues.70 However, one study in 

relation to the role of lncRNA TUG1 on radiosensitivity of 

prostate cancer showed that its expression was remarkably 

increased after irradiation.68 Also, the qRT-PCR analysis 

revealed the upregulation of TUG1 in response to radiation 

in bladder cancer cell lines in a time- and dose-dependent 

manners.64 Another study done by Wang et al., showed a 

significant up-regulation of TUG1 in radiosensitive ESCC 

tissues and cell lines compared to the resistant ones.71  

In a study by Lucian Beer et al., showed a significant 

upregulation of TUG1 after irradiation of peripheral blood 

mononuclear cells of healthy individuals. Also, this study 

revealed a strong time dependent regulation of a variety of 

lncRNAs, including TUG1.60 

 

Conclusion 

In conclusion, the present study showed that irradiation 

causes a significant increase in TUG1 and DANCR lncRNAs 

expression in MCF-7 and MDA-MB-231 cell lines in a dose 

and time dependent manner. Also, it is demonstrated that 

DANCR and TUG1 expression significantly differ between 

these two breast cancer cell lines. These results in addition to 

the recent evidences about the role of DANCR and TUG1 in 

DNA repair pathways are indicative of response to radiation 

in breast cancer cells. Therefore, there might be a possibility 

that DANCR and TUG1 could be regarded a biomarker for 

response to radiation. 
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