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Introduction  

Humans harbor trillions of widely diverse and immensely 

active microbial communities that are distributed along the 

oral GIT.1 It comprises 1013 to 1014 microorganisms, primarily 

bacteria, that outnumber human cells by a factor of ten.2 The 

bacterial population, which contains 300 to 500 different 

species of bacteria, plays an important role in the digestion of 

food, resistance to colonization from pathogenic microorganisms, 

production of short-chain fatty acids and essential vitamins, 

and modulation of the gut immune system.3,4 It is crucial to 

maintain the homeostasis between gut microflora and 

intestinal function to acquire balanced immunity. Alteration 

of this symbiotic relationship may shift the microbial 

composition towards dysbiosis, which plays an essential role 

in the development of various gastrointestinal disorders 

including colorectal cancer (CRC), inflammatory bowel 

disease (IBD), irritable bowel syndrome (IBS) and celiac 

disease among others.5-8 

CRC is the third most common form of cancer worldwide, 

mainly in industrialised countries. The incidence of CRC 

seems to grow gradually, leading to 694,000 deaths annually.9 

CRC, which originates from the epithelial cells lining the 

colon or rectum of the GIT, has its onset associated with 

multiple factors, and its prevalence is correlated to IBD.10 

Malignant forms of CRCs are characterised by the formation 

of polypoid adenomas leading up to intramucosal carcinoma, 

also known as a high-grade dysplastic adenoma. This phase 

develops through a multistep mechanism that involves 

specific gene mutations that may take years before it 
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becomes sporadic cancer. Accordingly, early cancer 

detection with subsequent complete endoscopic removal is 

currently the best strategy for cancer control. Besides, CRC 

patients who underwent chemotherapy often suffer from 

undesirable side effects. Cytotoxic agents are not selective, 

leading to collateral damage to healthy cells and tissues and 

an increased risk of cancer recurrence.  

Hitherto, many studies have reported that diet could 

contribute 50-90% of the development of CRC.11-13 Individuals 

who consume a diet high in red and processed meats, refined 

starches, and sugar while low in vitamins, fruits, vegetables, 

fibre, and whole grains tend to predispose themselves to 

CRC.14,15] Meanwhile, there is an escalating research interest 

in the modulation of gut microbiota and alteration of host 

metabolism by consuming dietary fibres, specifically prebiotics 

in cancer prevention. The International Scientific Association 

for Probiotics and Prebiotics (ISAPP) defines prebiotics as 

“a substrate that is selectively utilized by host microorganisms 

conferring a health benefit”.16 Studies reported that prebiotics, 

especially, fructooligosaccharides (FOS), inulin, and galacto- 

oligosaccharides (GOS) can potentially reduce appetite, enhance 

insulin sensitivity, and lipid metabolism in both animals and 

humans.17-19 Like probiotics, prebiotic supplementation has 

also been found to enhance the intestinal barrier by inducing 

the proliferation of commensal gut flora while reducing the 

levels of inflammatory cytokines.15,17,19  

With the advent of metagenomics and meta-transcriptomic 

approaches using next-generation sequencing (NGS) tools 

and terminal restriction fragment length polymorphism (T-

RFLP), the association of certain intestinal bacterial species 

with the consumption of prebiotics in the normal and 

intervention group can potentially be unraveled.15,20-23 

Remarkably, different individuals present unique “bacterial 

fingerprints” as the composition of gut microbiota is 

strongly dependent on a range of factors including host 

genetics, immunological factors, microbial species acquired 

at birth, diet, and antibiotic usage.24 This technology has 

gained immense interest and has shifted the paradigm of our 

understanding and treatment of CRC towards the 

incorporation of gut resident microbes and their functions.  

In light of the above-mentioned, this review highlights the 

association of gut dysbiosis and CRC with a special focus on 

using selected prebiotics to provoke both exploitative and 

interference competition, which is detailed in subsequent 

sections, leading to the establishment of benign beneficial 

microbiota in preventing cancer. Specifically, we discuss the 

updated evidence of prebiotic-induced chemo-protection and 

its mechanisms of action in the underlying prevention and 

inhibition of CRC carcinogenesis and progression. 

 

Dysbiosis of Gut Microbiota Promotes the Development 

of CRC 

Dysbiosis or imbalanced gut microbiota composition is 

associated with increased susceptibility to colorectal cancer 

(CRC).15,25 Different hypotheses for understanding the role 

of microbial unbalance in CRC carcinogenesis have been 

proposed. Some researches have agreed that the functional 

imbalance triggered by certain types of dysbiotic gut 

microbiota may cause pro-inflammatory responses and 

epithelial cell transformation that leads to cancer.26-28 As 

proposed by Yang and Jobin28 in their ‘driver-passenger 

theory’, the predominant clusters of mucosal bacteria (the 

driver) cause persistent DNA damage in human epithelial 

tissue, thus triggering tumor formation. The changes in the 

surrounding microenvironment during the tumorigenesis will 

then allow the colonization of opportunistic bacteria (the 

passengers) capable of facilitating tumor progression. Geng 

et al,29 Vigneswaran and Shogan30 and Sulzyc-Bielicka et 

al.,31 supported such distinct roles of bacterial drivers and 

passengers in CRC pathogenesis.  

In human health, the microbiota maintains intestinal 

homeostasis by regulating various biological functions, such 

as metabolic processes, immunity, and mucosal barrier. 

For instance, under anaerobic conditions, some species of 

microbiota, such as the Bacteroides genus, produce SCFAs 

that bind to GPR 41/43 receptors and stimulate peptide YY 

(PYY) production which suppresses gut motility and 

enhance nutrient absorption in the small intestine.32-34 This is 

a key process in controlling mucosal proliferation, 

differentiation, and maintenance of mucosal integrity. The 

intestinal compartmentalization of commensal microbiota 

acts as a gut barrier for pathogens. The failure of this barrier 

results in an increased “intestinal permeability” that has been 

causally implicated in CRC. Other examples of bacteria-

producing cancer-protective molecules are folate35 and 

biotin,36 which exert important metabolic functions and 

regulate the inflammatory response by stimulating the 

immune system essential for DNA synthesis and repair. 

A healthy gut microflora may potentially ward off the 

carcinogen-activating enzymes such as β-glucosidase, β-

glucuronidase, 7-α-dehydrogenase, nitroreductase, and 

azoreductase thus attenuating colon carcinogenesis.37-39 

Microbial dysbiosis, on the other hand, destroys the 

mutualistic relationships and potentially contributes to tumor 

development.40-42 Increased production of microbial antigens 

and metabolites due to changes in microbial activity can 

majorly influence on the immune response and be a source 

of chronic inflammation.28,43 Increased production of SCFA, 

like butyrate, might have a detrimental effect on the 

intestinal barrier, damaging epithelial cells and their 

junctions through activation of pro-inflammatory mediators 

such as cytokines, tumor necrosis factor-α (TNF-α), and 

interleukin-6 (IL-6).44,45 Some bacterial species produce 

toxins that breach the intestinal epithelial barrier and trigger 

a mucosal inflammatory response. Direct adherence and 

localization of Fusobacterium nucleatum via the FadA surface  
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Table 1. List of Microbiotas that are Most Likely Associated with the CRC (mucosa tissue samples/fecal samples)  

Phylum / Genus Bacteria 
Type of Tissue /  

Anatomical Site 

Type of Study 

CRC vs. Normal (In vivo / In vitro) 

Ref. (High in CRC) Ref. (Low in CRC) 

Firmicutes 

Streptococcus Streptococcus spp. proximal and distal tumors In vivo (human study) [22, 52, 53] [52] 

Streptococcus 

anginosus 

Gut 

Ruminococcus Ruminococcus spp. Gut, proximal and distal 

tumors 

In vivo (animal study & 

human study) 

[54-56] [26] 

Ruminococcus obeum Gut 

Ruminococcus bromii proximal and distal tumors 

Blautia Blautia spp. colonic mucosa in CRC In vivo (human study) - [26, 53] 

Clostridium coccoides Gut 

Faecalibacterium Faecalibacterium spp. colonic mucosa in CRC In vivo (animal study) - [53, 57] 

Faecalibacterium 

prausnitzii 

Gut In vivo (human study) 

Peptostreptococcus Peptostreptococcus 

spp. 

proximal colorectal tumors In vivo (human study) [22, 53] - 

colonic mucosa in CRC 

proximal and distal tumors 

Enterococcus Enterococcus spp. proximal and distal tumors In vivo (human study) [58] - 

Gemella Gemella spp. proximal and distal tumors In vivo (human study) [53] - 

Granulicatella Granulicatella spp. proximal and distal tumors In vivo (human study) [53] - 

Holdemanella Eubacterium biforme Gut In vivo (human study) [57] - 

Lachnoclostridium Lachnoclostridium spp. Gut In vivo (human study) - [56] 

Lactobacillus Lactobacillus spp. Gut In vivo (animal study), 

In vivo (human study) 

 [59] 

Mogibacterium Mogibacterium spp. colonic mucosa in CRC In vivo (human study) [53]  

Oscillibacter Oscillibacter spp. Gut In vivo (human study)  [56] 

Parvimonas Parvimonas micra Gut In vivo (human study) [60] - 

Roseburia Roseburia spp. Gut In vivo (animal study), 

In vivo (human study) 

- [61] 

Selenomonas Selenomonas spp. proximal colorectal tumors In vivo (human study) [22]  

Subdoligranulum Subdoligranulum spp. Gut In vivo (human study) [56, 58] - 

Veillonella Veillonella spp. proximal and distal tumors In vivo (human study) [53] - 

Bacteroidetes 

Prevotella Prevotella spp. proximal colorectal tumors In vivo (human study) [22, 53, 54] - 

proximal and distal tumors 

Gut 

Prevotella copri Gut In vivo (human study) - [57] 

Prevotella stercorea 

Bacteroides Bacteroides spp. proximal and distal tumors In vivo (human study) [53, 57] - 

Bacteroidetes fragilis Gut 

Bacteroides fragilis 

Bacteroides uniformis 

Parabacteroides Parabacteroides 

distasonis 

Gut In vivo (human study) [62] [56] 

Parabacteroides spp. 

Porphyromonas Porphyromonas spp. colonic mucosa in CRC In vivo (human study) - [53] 

Prevotellaceae Prevotellaceae spp. colonic lumen in CRC In vivo (human study) - [53] 

Porphyromonadaceae Porphyromonadaceae 

spp. 

Gut In vivo (human study) [52] [52] 

Proteobacteria 

Gammaproteobacteria Escherichia coli colonic mucosa in CRC In vivo (human study) [63]  

Escherichia-Shigella distal colorectal tumors In vivo (human study) [22] [58] 

Pseudomonas spp. proximal and distal tumors 

Pseudomonas aeruginosa HT-29 colorectal cancer cell line In vitro (cell culture) [53] - 
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Haemophilus Haemophilus spp. proximal and distal tumors In vivo (human study) [53] - 

Klebsiella Klebsiella spp. proximal and distal tumors In vivo (human study) [64] [58] 

Morganella Morganella spp. proximal and distal tumors In vivo (human study) [53] - 

Oxalobacter Oxalobacter 

formigenes 

Gut In vivo (human study) [64] - 

Actinobacteria 

Bifidobacterium Bifidobacterium spp. colonic mucosa in CRC In vivo (human study) - [53]  

Bifidobacterium genus 

(Bb) 

Gut In vivo (human study) 

Coriobacteriaceae Coriobacteriaceae spp. colonic lumen in CRC In vivo (human study) [52, 53]   

Gut 

Collinsella Collinsella aerofaciens Gut In vivo (human study) [65] - 

Fusobacteria 

Fusobacterium Fusobacterium 

nucleatum 

Gut In vivo (human study) [22, 53, 66-68] - 

proximal and distal tumors In vivo (Animal study) 

colonic mucosa in CRC In vivo (human study) 

Leptotrichia Leptotrichia spp. distal colorectal tumors In vivo (human study) [22] - 

Verrucomicrobia 

Akkermansia Akkermansia 

municiphila 

Gut In vivo (human study) [52, 65]  

Akkermansia spp. 

Spirochaetes 

Treponema Treponema spp. Gut In vivo (human study) [69]  

 

protein and interaction with E-cadherin triggers the release 

of inflammatory factors (i.e. NF-κB, IL-6, IL-8, IL-10, and 

IL-18) and promotes activation of β-catenin and Wnt 

signalling which is a vital factor in inflammation related-

CRC tumorigenesis.41,46,47 On the other hand, enterotoxins 

(i.e. fragylisin) and reactive oxygen species produced by 

Bacteroides fragilis and Enterococcus faecalis are evidenced 

to induce oxidative DNA damage and epithelial barrier 

dysfunction in the inflammation-related CRC models.44,48-50 

Earlier, Wu et al,51 reported that toxin from B. fragilis 

mediates changes in T-cell factor–dependent β-catenin 

nuclear signalling. These bacterial species demonstrated 

significantly different abundances between CRC and healthy 

samples. 

Changes in diet style, such as increased consumption of 

sugars, refined starch, processed foods, food additives, 

unwashed fruit and vegetables, and trace amounts of harmful 

chemicals, primarily cause dysbiosis that potentially brings 

about CRC. A case in point, seminal analyses of the 

geographic variation in CRC demonstrated that more than 

two-thirds of the cases are attributed to dietary habits. A diet 

containing defensive micronutrients, counting β-carotene 

and other carotenoids, as well as carcinogens and mutagens 

has been associated with the risk of cancer development.52 

Furthermore, dietary factors like higher red and processed 

meat consumption and deficiency of fibre, calcium, vitamin 

D, and folate are well-recognized factors associated with 

higher CRC risk. Apart from that, smoking, obesity, 

excessive alcohol consumption, poor dental hygiene (allows 

bacteria to grow out of balance in the oral cavity), high 

levels of stress (i.e. anxiety or depression, which affect the 

immune system), and use/misuse antibiotics and antibacterial 

medications are among other well-known risk factors of 

dysbiosis and CRC.53,54  

In addition to the cited factors, gene expression in host 

cells is another potentially important mechanism by which 

the microbiota impact host physiology. Yuan et al.,55 

recently conducted the first systems-level map of the 

association between microbes and host miRNAs in the 

context of CRC, providing targets for further experimental 

validation and potential interventions. They hypothesized 

that the host miRNAs likely regulate glycan production that 

could promote the recruitment of pathogenic microbial taxa 

to the tumor. These interactions might be a direct target for 

developing therapeutic strategies for CRC patients. Follow-

up studies using model systems are recommended to assess 

the causal role of individual microbes and miRNAs in CRC. 

A functional gene analysis conducted by O'Keefe et al.,56 

demonstrated that by switching the diet style between rural 

South Africans and African Americans, the native Americans 

who initially had greater expression of the BcoA gene 

encoding for butyryl-CoA:acetate CoA-transferase enzyme, 

which is responsible for the last step in butyrate synthesis, 

had a reduction in its gene expression. Furthermore, after 

switching the diet, it was reported that Americans who 

received the “African” diet reduced the baiCD gene 

abundance and the secondary bile acids, lithocholic and 

deoxycholic acid, while the elevation was observed in Africans 

who received the ‘Western’ diet. These reciprocal changes in 

aspects of the microbiome and metabolome may lead to 
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reciprocal changes in mucosal biomarkers of cancer risk. 

 

Functional Microbiome CRC Signatures as a Basis for 

Future Diagnostics 

Alterations in the gut ecosystem and how it contributes 

to human health can now be assessed through various 

technologies. Fecal metagenomics, for instance, is a useful 

tool to determine microbial composition community (relative 

abundance of taxa) and has novel diagnostic value where it 

has been used to infer bacterial metabolic pathways in 

various GIT illnesses, particularly CRC. Hitherto, F. nucleatum 

was shown to be the most dominant phylotype in CRC and is 

a subject of intensive research.  

The gut microbiota of healthy individuals is composed of 

permanent and transitory microbial species and subspecies. 

The majority of microbes forming the human gut microbiota 

could be divided into four major phyla: Firmicutes (<70%), 

Bacteroidetes fragilis (<30%), Proteobacteria (<5%), and 

Actinobacteria (<2%), and in smaller amounts of Fusobacterium 

nucleatum (F. nucleatum) and Verrucomicrobia (<1%), 

Cyanobacteria and Escherichia coli. Studies have indicated 

that these bacterial phyla play a critical role in CRC 

carcinogenesis.57 A recent systematic review concluded 

that certain bacteria, such as Staphylococcaceae, Alistipes, 

Fusobacteria, Porphyromonadaceae, Akkermansia spp., 

Coriobacteridae, and Methanobacteriales were consistently 

augmented in CRC. While some others (such as 

Bifidobacterium (Bb), Lactobacillus, Ruminococcus, 

Faecalibacterium (Fp), Roseburia, and Treponema) were 

underrepresented.58,59 In contrast, Liang et al., (2014) 

reported that Lactobacillus increased significantly in 

hamster models during CRC formation.60 Table 1 shows a 

list of microbiotas most likely associated with CRC. 

A simple fecal microbial biomarker for detecting CRC has 

been reported, whereby an increase in F. nucleatum and a 

decrease in Fp and Bb could be a sign of CRC.61 It is worth 

noting that such gut microbiome changes are linked to a 

multistep process in CRC tumorigenesis. A fecal metagenomic 

and metabolomic study by Yachida et al.,62 was conducted 

on 616 samples from CRC patients to unravel taxonomic 

differences of gut microbiota in cases of multiple polypoid 

adenomas and intramucosal carcinomas. Interestingly, it was 

discovered that the relative abundance of F. nucleatum spp. 

was significantly and proportionately higher from intramucosal 

carcinoma to more advanced stages. Meanwhile, Atopobium 

parvulum and Actinomyces odontolyticus were significantly 

elevated only in multiple polypoid adenomas and/or 

intramucosal carcinomas. This finding suggests that the 

shifts in the microbiome are triggered from the very early 

stages of tumor development. 

Human population-based studies indicated that augmentation 

of F. nucleatum is associated with a low level of T-cell 

infiltration, high-level microsatellite instability, and advanced 

disease stage in CRC tissue.63 In agreement with this study, 

Liang et al.,64 reported that quantifying F. nucleatum in 

faeces by quantitative polymerase chain reaction could 

discriminate CRC patients from healthy controls with a high 

sensitivity of 78% and specificity of 80%. In addition, Fp 

and Bb have gained much attention in CRC prevention. Shah 

et al., recently conducted the first microbiome-based meta-

analysis for CRC to identify a common microbial marker in 

fecal samples of 195 CRC patients.65 They emphasized a 

marked increase in Parabacteroides distasonis, Parvimonas 

micra ATCC 33270, Streptococcus anginosus, and other 

strains of Proteobacteria along with the previously reported 

taxa, such as Fusobacterium species. Using linear discriminant 

analysis coupled with the effect size measurements, Gao et 

al.,22 found that Fusobacterium, Prevotella, and Peptostreptococcus 

are the key phylotypes contributing to the dysbiosis of 

mucosa-associated microbiota in CRC patients.66  

Despite recent interesting findings, having quantitative 

real-time PCR and 16S rRNA NGS methods in dysbiosis 

and CRC could untangle the complexity of microbial gut 

microbial ecosystem in CRC to help us define the microbial 

dysbiosis role in CRC. If these mechanisms are confirmed, 

restoration of healthy microbiota may be a potential strategy 

to alleviate the progression of CRC.67 The impacts of several 

factors, in particular, probiotics, prebiotics, faecal microbiota 

transplantation (FMT), dietary alteration, calorie restriction, 

and administration of antibiotics, have been studied to find 

out a suitable way to restore the healthy gut microbial structure. 

Furthermore, the bacterium that can be used as a CRC 

detection marker or a therapeutic target and treatment will 

soon be unraveled for better intervention in tumor progression. 

 

Definition and Scope of Prebiotics 

In the last 20 years, the definition of prebiotics has varied 

greatly, highlighting the importance of reaching a consensus 

on the precise nature, mechanisms of action, health benefits, 

and applicability of prebiotic substances. In 1995, Gibson 

and Roberfroid68 established the initial definition of 

prebiotics which were described as “non-digestible food 

ingredient that beneficially affects the host by selectively 

stimulating the growth and/or activity of one or a limited 

number of bacteria in the colon, and thus improves host 

health”. Nine years later, the authors redefined the term 

prebiotics as “A Selectively fermented ingredient that allows 

specific changes in the composition and/or activity in the 

gastrointestinal microflora that confers benefits upon host 

health”.69 The authors reviewed the concept in terms of three 

criteria: (a) Resistance to digestion and gastrointestinal 

absorption; (b) Fermentation by intestinal microflora; (c) 

Selective stimulation of the growth and/or activity of gut 

bacteria associated with health. Although this definition was 

broadly embraced, the prebiotic concept has since been 

revised to include its usage in extra intestinal locations. 
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While the majority of prebiotics are typically taken orally, 

they can also be administered to other areas of the body that 

are inhabited by microorganisms, such as the skin and 

vaginal tract. To redefine the concept of prebiotics, a revised 

definition of the term prebiotics was proposed by the authors 

again and approved by the ISAPP in 2017. Currently 

accepted definition of prebiotics is “A substrate that is 

selectively utilized by host microorganisms conferring a 

health benefit”.16 Dietary fibers can also be categorized into 

three groups based on their structure: prebiotic dietary fibers 

(such as FOS and GOS), dietary fibers that are considered 

candidates for prebiotics (including polydextrose, resistant 

starch, and pectin), and dietary fibers that are not recognized 

as prebiotics (such as cellulose and lignin).70  

Prebiotics could confer a health benefit due to their nature 

as fermentable dietary fibre, which can nourish and conserve 

beneficial gut microbiota in our gut.71 Dietary fibre is a 

complex carbohydrate, such as galactooligosaccharides 

(GOS), fructooligosaccharides (FOS), inulin, and resistant 

starches, that resist digestion in the small intestine and reach 

the colon where they are fermented by the gut bacteria.16-19 

Prebiotics such as GOS, FOS, and inulin have been granted 

“Generally Regarded as Safe” (GRAS) status by the FDA. 

Thus they are considered safe for use in food and 

supplements.71 Whereas other types of prebiotics such as 

xylooligosaccharides (XOS), isomaltooligosaccharides (IMOS), 

glucooligosaccharides, pectin oligosaccharides (POS), 

mannanooligosacharides (MOS), gentiooligosaccharides (GTO), 

chitooligosaccharides (CHOS), soybean oligosaccharides 

(SOS), and polydextrose that are not commercially available 

in high purity and the safety of these oligosaccharides are 

yet to be evaluated. 

As a dietary fibre, prebiotics serves as a nutrient for 

beneficial bacteria in the gut, promoting their growth and 

metabolic activity such as fermentation.  The fermentation of 

prebiotic fibres in the gut produces short-chain fatty acids 

(SCFAs), which have been shown to have anti-cancer 

properties. This can help to increase the diversity of the gut 

microbiota, which has been linked to improved gut health 

and a reduced risk of various diseases such as CRC.16-19,72 

The ability of prebiotics to alleviate gut dysbiosis associated 

with CRC could be clarified on its effects to modulate the 

diversity of gut microbiota, increase the integrity of the 

intestinal barrier, and secretion and presence of beneficial 

compounds that could stimulate an immune response.72 

Thus, any intervention for CRC using dietary fibres that 

could stimulate beneficial indigenous gut microbiota, 

decrease the number of enteropathogens, reduce intestinal 

permeability and enhance the immune response potentially 

enhance patient outcomes. 

 

Potential Chemopreventive Roles of Prebiotics against CRC  

Given that, the majority of CRC is sporadic rather than 

familial, dietary interventions that could improve gut 

microbiota have recently emerged as potential preventive 

strategies against the development of CRC. There is 

evidence that specific dietary fibres confer chemo-preventive 

effects by maintaining the integrity of the epithelial layer of 

the intestines and enhancing the resistance against pathogenic 

colonization. A meta-analysis by Friedenreich, Brant73 

concluded that consumption of over 27 g of fibres per day 

could lead to a 50% reduction in CRC risk as compared to 

the consumption of less than 11 g. Interestingly, it is 

particularly elicited by prebiotics. Several prebiotics are 

found in natural foods, such as chicory, cereals, agave and 

milk. However, most of the natural sources have prebiotics 

in trace amounts that necessitate refining them from foods or 

producing them by enzymatic, chemical or thermal processes 

to yield enough prebiotics to get their effects.74 Disaccharide 

lactulose, oligosaccharides, resistant dextrin, polydextrose, 

arabinoxylans and resistant starches, polyols (lactitol and 

isomalt) are being considered as emerging prebiotics.75 Inulin 

and fructo-oligosaccharides produced by the fermentation of 

the dietary fibres were reported to induce the proliferation of 

beneficial gut microbes, namely Bifidobacterium spp. and 

Lactobacillus spp.76 These metabolites may cause changes in 

the gut microbial composition and encode distinct functional 

capacities to prevent CRC development in humans.  

In fact, many epidemiologic and animal studies have 

demonstrated a chemo-preventive effect of prebiotics, and it 

is postulated to happen mainly through the restoration of the 

composition or activity of the healthy microflora.77 Isomalto-

oligosaccharides (IMO), for example, are partially indigestible 

prebiotics, composed of 125 glucose monomers linked by a 

(16) glycosidic linkages with a mixture of isomaltose (Glu 

α 16 Glu), isomaltotriose (Glu α16 Glu α16 Glu), and 

panose (Glu α16 Glu α14 Glu).78,79 Many studies have 

indicated that IMO alters the gut microflora by increasing 

the level of Bifidobacteria and Lactobacilli as well as 

reducing the levels of harmful bacteria like Clostridia and 

Bacteroides.80,81 CRC study on the protective role of IMO 

using an in vivo model is scarce. However, but a two-month 

human trial suggested that daily supplementation of 10 g of 

IMO could effectively reduce the colon cancer risk markers 

and improve colonic ecology.82 Meanwhile, inulin and 

oligofructose have been shown to reduce the incidence of 

chemically induced CRC in rodents. Both prebiotics 

significantly increased the number of apoptotic cells per 

crypt and reduced the numbers of aberrant crypt foci (ACF) 

in Azoxymethane (AOM)-induced rats.83 These findings 

indicate their protective role at an early stage of CRC 

development. Another study on resistant starch also 

demonstrated a reduced number of ACFs and aberrant crypts 

in 4-week-old AOM-induced A/J mice, which was further 

linked to the regulation of apoptosis-associated gene 

expression levels in tumor samples.84 This is supported by 
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Wang et al.,85 who revealed that resistant starch in the diet of 

dimethylhydrazine-induced C57BL/6 mice prevent tumor 

carcinogenesis of colon epithelial cells and promotes 

apoptosis through endoplasmic reticulum (ER) stress-

mediated mitochondrial apoptosis pathway. A recent study 

conducted on 140 CRC patients revealed that prebiotic 

intake could improve serum immunologic indicators as well 

as the abundance of four commensal microbiota containing 

opportunistic pathogens in them, potentially reducing 

surgical stress.86 However, conflicting results are reported in 

several recently published human studies measuring the 

direct physical indices of CRC risk after prebiotic 

consumption.87 A literature search on CRC and prebiotic 

consumption in the human study revealed at least four 

articles on resistant starch. None of the studies demonstrated 

any effects of resistant starch on CRC development. Although 

there were relative improvements in crypt mitotic location, 

no changes in the gene expression and DNA methylation 

after resistant starch consumption were observed in cell 

proliferation and apoptosis, crypt morphology, or ACF. 

Table 2 summarizes the findings from recent literature on 

the chemo-protective effect of prebiotics on CRC. 

 
Table 2. The Findings of Recent Literatures on the Protective Effects of Prebiotic in Fighting CRC 

Prebiotic Parameters Reference 

Galactooligosaccharides  Modulate the intestinal microbiota 

Break into SCFA (acetate, propionate and butyrate) 

Increase intestinal lactate 

Reduce fecal concentration of lithocholic acid 

Reduce fecal pH 

Inhibit nitroreductase and B-glucuronides activities 

[98] 

[99] 

Resistant starch Regulation of apoptosis 

Reduce fecal pH 

[97] 

[96] 

Inulin  Increase levels of SCFAs 

Increase fecal levels of Bifidobacterium spp 

[100] 

Fructooligosaccharide  

 

Break into SCFA,  

Improved mineral absorption 

In vitro cytotoxic and anti-proliferative activities 

In vivo antioxidant enzyme activities 

[101] 

[102] 

Isomalto-oligosaccharides  Decrease the fecal secondary bile acid 

Reduce fecal glucuronidase and mucinase activity 

[94] 

Arabinogalactan  Immunomodulation against cancer in in vitro and in vivo [103] 

Chitooligosaccharides Enhance the colonic concentrations of SCFAs 

Stimulate probiotic growth 

Inhibit the growth of potential pathogen 

Anti-inflammatory 

Immunostimulation 

[104, 105] 

Arabinoxylooligosaccharides  

 

Reduce gut infections 

Better absorption of minerals 

Stimulate the growth of probiotics  

[106] 

Gentiooligosaccharides  Stimulate probiotic growth  [107] 

Pectinoligosaccharides 

 

Stimulate apoptosis process in vitro 

Anti-inflammatory effect 

[108] 

Beta-glucan  Immunostimulation [109] 

Xylooligosaccharide  

 

Increase the population of probiotics  

Alleviate the incidence and multiplicity of ACF Ameliorate the level of lipid peroxidation 

Improve the activities of glutathione-S-transferase and catalase in colonic mucosa and liver 

[110] 

 

Mechanisms of Prebiosis in Fighting CRC 

While more papers are published based on the effects of 

prebiotics in reducing infection and enhancing recovery in 

patients following perioperative CRC, studies on its 

anticancer properties against CRC in humans are very 

limited. With the inclusion of the animal CRC model related 

to anticancer research, only 21 articles were found based on 

the PubMed search from 2009 to 2019, whereas only 5 

articles were published from 1999 to 2008. The initiation 

and progression of CRC result from the accumulation of 

genetic mutations and epigenetic alterations of the human 

genome due to dietary and environmental factors.88 Despite 

a growing amount of evidence elucidating the possible 

mechanisms of action or prebiosis in modulating CRC 

carcinogenesis, the precise mechanisms remain unclear. 

Such knowledge is vital to provide new perspectives for 

early diagnosis, particularly identifying high-risk populations 

and treatment for CRC. Figure 1 exhibits several possible 

mechanisms of prebiosis in CRC studies. 

 

Simulation of Beneficial Indigenous Gut Microbes 

Although the precise mechanisms by which prebiotics 

inhibit colon tumours are not completely elucidated, it is 

likely that the modulation of gut microbiota mainly 

contributes to the effects of these dietary fibres. Intestinal 

microbes convert host-consumed nutrients, such as vitamins, 

amino acids or dietary fibres, into other metabolites. The 

converted metabolites, such as SCFAs, biogenic amines and 

other amino-acid-derived metabolites (e.g., serotonin or 

gamma-aminobutyric acid) play an important role in regulating 

health and recovery.74,93 A specific type of dietary prebiotic 

fibres produces a distinctive proportion and distribution of 

SCFAs in the gut. SCFAs can decrease intestinal pH to 

prevent the outgrowth of pathogenic microflora, shape host  
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Figure 1. Summary of the Proposed Mechanisms of Prebiosis Action in Inhibition of CRC. The ingestion of prebiotics: i) provides nutrients to 

improve probiotic growth in the gut. Subsequently, some species of probiotics will synthesize metabolites that reduce the hos t’s intestinal pH, 

effectively reducing enteropathogen growth and mediating the biotransformation of dangerous carcinogens.
89

 The probiotics also facilitate the 

removal of ultimate mutagens on the pathogen peptidoglycans,
90

 ii) result in the production of probiotic peptides that upregulates tight junction 

strengthening,
91

 and iii) alter gut microecology, which upregulates immune cell activity, followed by an increased expression of dendritic cells, 

CD3+CD8+ T cells, CD49b+CD3− NK cells.
92 

 

intestinal anatomy and gut mucosal immune system, as well 

as protect against oxidative DNA damage and reduce altered 

cell proliferation.94 A higher concentration of SCFAs, particularly 

butyrate, has been detected in the proximal colon, where 

rapidly fermentable dietary fibre is fermented. Alternatively, 

modulated SCFAs produced by slow fermentable dietary 

fibre are found in the distal colon.95 Many researches have 

shown that butyrate induces the proliferation of normal 

colonocytes while suppressing cells with colorectal tumour 

phenotype.96 Due to its accumulation in the cytoplasm 

during cancer progression, butyrate plays a role as a histone 

deacetylase inhibitor (HDACi), enabling it to regulate the 

transforming growth factor β (TGF-β) signalling pathway 

during cell sensitization and exert its pro-apoptotic effects in 

cancerous colonocytes. Butyrate’s HDACi activity also 

helps to prevent macrophage-derived inflammation by 

suppressing the activity of pro-inflammatory cytokines in the 

gut.97,98 

In diet intervention studies, Drabinska et al,99 demonstrated 

that prolonged dietary administration of oligofructose-

enriched inulin significantly increased Bifidobacterium 

count and increased faecal acetate and butyrate levels. 

Furthermore, researchers have shown that mixtures of 

multiple dietary fibre types confer added advantages over 

single dietary fibre. For example, a combination of raftilose 

(oligofructose) and guar gum in an in vitro fermentation 
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study produces higher total SCFAs than guar gum alone.100 

Meanwhile, Ghaffarzadegan et al.,101 demonstrated that 

consumption of both guar gum and pectin modulate high 

proportions of butyrate in comparison to rats fed with 

individual fiber. Additionally, in an in vivo study by Qamar 

et al.,102 revealed a significant inhibition of ACF formation 

in mice fed with a  combined diet of GOS and inulin when 

compared to the individual prebiotic treatments. This effect 

is associated with bacterial enzymatic activities and SCFAs 

at dose-dependent effects. 

 

Decreased Number of Enteropathogens 

Many researches have also indicated that in vitro incubation 

of faecal bacterial cultures with oligofructose and/or inulin 

have shown to promote the growth of beneficial commensal 

bacteria, namely Bifidobacteria and Lactobacilli, whilst 

enteropathogens, such as E. coli or Clostridia, are 

maintained at low levels.83,103 Among other prebiotics that 

have a similar growth-promoting effect on these bacteria are 

GOS, arabinoxylooligosaccharides, gentiooligosaccharides, 

xylooligosaccharides, and chitooligosaccharides (Table 2). 

Moreover, the abundance of Bifidobacteria and Lactobacilli 

in the gut facilitates the removal of the ultimate mutagens 

bound on the cell surface and peptidoglycans of the bacterial 

cell.104 Selective fermentation by Bifidobacteria and 

Lactobacilli produces lactic acid bacteria and other SCFAs 

as metabolic products from non-digestible carbohydrate 

fermentation in the gut, reducing intestinal pH, thus catering 

for a favourable microenvironment for the probiotic growth 

while providing a bactericidal environment for putative 

enteropathogens. This favourable microenvironment stimulates 

the production of β-glucuronidase, a bacterial enzyme 

responsible for the biotransformation of procarcinogens and 

carcinogens into less toxic metabolites.105 

 

Reduced Intestinal Permeability 

The strengthening of tight junctions is another possible 

mechanism by which prebiotics promote the growth of 

beneficial bacteria to convey their anticancer properties via 

the normalisation of increased intestinal permeability. 

However, the evidence for the mechanisms involved still 

remains elusive. In an in vitro study using the trans-

epithelial electrical resistance (TER) assay and Caco-2 cell 

line as a model, Mundi et al.,106 demonstrated that prebiotics 

(Raftilose) confer added advantage to probiotic supplementation 

(Bifidobacterium Bb 12) by increasing the integrity of Caco-

2 intestinal monolayers treated with the tumor promoter, 

deoxycholic acid (DCA). Metabolites or bioactive factors 

(e.g. some forms of peptides) mediated by these probiotics 

are known to be a factor in the upregulation of various cell 

signaling pathways (i.e. integrin-p38 MAP kinase-dependent 

mechanism) that lead to the strengthening of tight junctions 

and the intestinal barrier function.107 

Enhancement of the Immune Response 

Another recently proposed mechanism of prebiosis in 

exerting anticancer properties is by activation of the immune 

response following alteration of gut microecology. Yang et 

al.,108 has revealed that arabinogalactan significantly induced 

the expression of cytokines, chemokines, and co-stimulatory 

receptors in an in vitro microarray study. The study also 

noted an increase in the percentage of DC, CD3+CD8+ T 

cells, CD49b+CD3− NK cells among splenocytes, and 

cytotoxicity activity in tumor-bearing mice. More recent 

data showed differences in the immunomodulatory effects of 

candidate probiotic bacteria against the stages of CRC 

carcinogenesis. Regarding the chemoresistance of tumor 

tissues, novel immune checkpoint therapy may not confer 

any effects on patients with stage III or IV CRC.109 Therefore, 

developing a better understanding of the chemosensitivity of 

prebiotic therapy and its underlying mechanisms in CRC 

should be a priority. 

 

The Synbiotics and the Selectivity as a Challenge to 

Achieve Synergism in Combating CRC 

Although scientific evidence demonstrating the health-

promoting potential of prebiotics continues to accumulate, 

not all dietary prebiotics are good fermentative substrates for 

the growth of certain probiotics. For example, Lactobacillus 

strains with low starch-degrading activity cannot ferment 

resistant starch, thus exhibiting low pro-apoptotic activity 

towards CRC cells.110 Some controversial experimental 

findings also prebiotics or synbiotics may not have 

protective roles against CRC. Rats fed with an inulin diet 

showed a similar number of polyps as those fed with a high-

beef diet, and the number of rats bearing CRC was 100% in 

the inulin group while 89% in the high-beef group.111 

Differential synbiotics treatment outcome against CRC was 

observed between the beneficial probiotic Bifidobacterium 

and Lactobacillus strains with germinated brown rice in 

forming ACF, whereby B. animalis did not reduce the 

formation of ACF significantly as compared with L. 

acidophilus.112 This finding could be due to the selectivity of 

gut microbiota to exert the synergism effect.  

It is worthwhile to note that prebiosis is indirect, and its 

selectivity may or may not increase the host’s resident 

gastrointestinal beneficial microbiota. Since the terms allude 

to synergism, synbiotics should be the key to solving this 

problem, specifically by using prebiotic compounds that 

selectively favor the survival, growth, and activity of the 

selected indigenous probiotic strain(s). An ideal synergistic 

synbiotics product should incorporate appropriate single or 

multi-strain probiotics with a suitable mixture of prebiotics 

that confer an added or synergistic effect by promoting the 

multiplication of the endogenous beneficial microbes and 

reducing the number of cancer-promoting bacteria. Recently, 

a synbiotics blend of L. acidophilus, B. animalis subsp. 
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lactis, and germinated brown rice, as a candidate prebiotic, 

have been shown to inhibit CRC carcinogenesis by enhancing 

antioxidative capacity and inducing apoptosis in rats treated 

with 1,2‐dimethylhydrazine (DMH) and dextran sulfate 

sodium (DSS).112 In another similar animal model, a 

combination of B. lactis and resistant starch enhanced the 

acute apoptotic response to a genotoxic carcinogen (AARGC) 

and colonic fermentative events. It indicates that resistant 

starch has shown to serve as a metabolic substrate for B. 

lactis to exhibit its proapoptotic action.110 Meanwhile, an in 

vivo study conducted by the same group validated the 

protective effect of B. lactis in their synbiotic combination 

with resistant starch in AOM-induced CRC in rodent 

models.113 This finding corroborates the hypothesis that the 

synbiotic effect confers additional advantages in CRC 

prevention strategy as compared to prebiotic or probiotic 

alone. 

It should be mentioned, however, that the beneficial effects 

of synbiotics against CRC are mostly postulated based on 

animal studies. To date, very few human trials on this 

subject have been published, and these reports often give 

inconclusive results. One of the earliest clinical findings is 

from a 12-week randomized, double-blinded, placebo-

controlled human study. It was reported that a mixture of 

oligofructose-enriched inulin in conjunction with L. 

rhamnosus GG (LGG) and B. lactis Bb12 (BB12) reduced 

the risk of CRC mainly by alleviation of genotoxin 

exposure. This intervention also stimulated the growth of 

Bifidobacteria and Lactobacilli and reduced Clostridium 

perfringens.114 Meanwhile, in another 4-week crossover, 

randomized, double-blind, placebo-controlled trial of 

synbiotic combination of resistant starch and B. lactis, a 

significant change in the fecal stream bacterial community 

was observed. However, there were no significant alterations 

in the faecal chemistry and epithelial kinetics.115 In a recent 

study, Krebs116 showed no statistical differences in the 

systemic inflammatory response in both prebiotic and 

synbiotic groups, although there was a considerably higher 

abundance of lactic acid bacteria (LAB) present in the 

mucosa of the CRC patients. A meta-analysis conducted on 

21 RCT (1776 participants), also showed that probiotic and 

synbiotic supplementation resulted in a reduction of time to 

first flatus, time to first defecation, days to first solid diet, 

days to first fluid diet, and days to postoperative hospital 

stay after gastrointestinal cancer surgery when compared to 

the control group. Furthermore, probiotic and synbiotic 

supplementation decreased the incidence of abdominal 

distension and postoperative ileus. 

The challenge to produce an ideal synergistic combination 

of prebiotics and probiotics has spurred researchers to gather 

empirical evidence for its use in the prevention and 

treatment of CRC. Due to the huge diversity of the gut 

microbiome, the introduction of any new probiotics and 

prebiotics may lead to homeostasis dysregulation in the 

intestinal microflora or commensal dysbiosis associated with 

the pathogenesis of various diseases. This occurs when some 

prebiotics (other than inulin or trans-galactooligosaccharides) or 

dietary fibers provide a source of energy for the growth of 

opportunistic pathogenic bacteria. This overgrowth of the 

pathogenic bacteria is always related to the competitive 

removal of the supplemented probiotic bacteria in the gut of 

the host. 

The administration of this synbiotic treatment also poses a 

challenge. Certain strains and species of probiotics are 

vulnerable to extreme gastric conditions where they could be 

digested before they can reach the small intestine in order to 

colonize and exert the intended benefits. Therefore, probiotics 

require a protective shield that can also act as a transport to 

safely released in the intestines.117 In this case, the matched 

prebiotics can coat the probiotics, allowing them for gastric 

digestion. Optimization of the tailored supplements is, however, 

largely dependent on the selectivity of the prebiotics, the 

strain of probiotics, and several other environmental factors, 

such as temperature and pH.118 It should also be noted that 

due to the unique gut microbiome in each individual, the 

viability and effectiveness of the prebiotics and probiotics 

may vary.119 Therefore, finding a perfect combination of 

prebiotics and probiotics to enhance the prophylactic and 

chemo-protective properties of synbiotics may only be 

feasible with a comprehensive interpretation of the microbiome 

in individual human and animal studies. 

 

Conclusion and Future Remarks 

Prebiotics have been widely reported to be beneficial in 

combating CRC by increasing the colonization and 

proliferation of commensal microbes in the colon and 

reducing carcinogen production. Most marketed prebiotics 

exert protective effects against CRC by increasing the 

abundance of Bifidobacterium and Lactobacillus while 

decreasing the abundance of pathogenic microbes, such as 

Clostridia and Bacteroides. A combination of multiple 

dietary prebiotics demonstrates better therapeutic outcomes 

for CRC development than a single prebiotic treatment. 

Many have proposed the mechanisms of action that underlie 

their protective activity. However, the exact processes that 

are responsible for these actions remain elusive. Nonetheless, 

the possible central mechanisms may involve the stimulation 

of beneficial indigenous microbes via selective colonic 

fermentation of prebiotics, leading to decreased number of 

enteropathogens via SCFA production, enhanced immune 

response, enhanced micro-nutrition absorption in the colon, 

modified gene expression in the cecum, colon, and faeces, 

elimination of exogenous carcinogens and enhanced activity 

of xenobiotic metabolizing enzymes.  

Apart from these, using prebiotics with probiotics to form 

symbiotics for combating CRC has provided synergistic and 
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additive protective effects as compared to individual 

treatment alone. However, current reports on these benefits 

are conflicting and merit further research to determine the 

exact mechanisms involved, which are necessary to facilitate 

unbiased preclinical and clinical trials. To encourage using 

prebiotics in combating CRC, future investigations should 

focus on the pre- and post-treatment outcome against CRC 

carcinogenesis, patients in different stages of CRC and 

tumor location. Besides, molecular analytical tools, such as 

metagenomics, meta-transcriptomic, functional gene analysis 

or NGS approaches, should be used to precisely identify the 

association of certain intestinal microbes with the matched 

CRC and healthy tissues as well as the compositional shift in 

response to prebiotic treatment. In the context of symbiosis, 

it is pivotal to determine its optimal formulation and 

working dose to enhance the efficacy in treating CRC with 

minimal side effects. Furthermore, the compatibility between 

prebiotics and different probiotic strains to achieve optimal 

therapeutic effects should also be explored. 
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