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Introduction  

In recent decades, there has been a special attention to the 

development of the Magnetic Nanoparticles (MNPs) for 

diagnosis and cancer targeted treatment and environmental 

means.1-4 Also, due to biocompatibility, ultra-small size, 

chemical stability in physiological circumstances, and significant 

accumulation at the disease site, the Superparamagnetic Iron 

Oxide Nanoparticles (SPIONs) are more attended.5,6 Moreover, 

these SPIONs are highly potential to act as a contrast agent 

in Magnetic Resonance Imaging (MRI), and can also 

generate heat in an AC magnetic field for the cancer-specific 

hyperthermia applications.7,8 Moreover, MNPs are used as 

magnetically targeted carrier systems in drug delivery. Notably, 

the hyperthermia method using magnetic nanoparticles is 

considered as a promising approach to improve the treatment 

of certain cancers, due to reducing the dose of chemotherapy 

and having fewer side effects.9 Also, advances in the performance 

of MNPs for local heating can be known as a good option to 

kill cancer cells without limiting penetration into the tissue. 

However, hyperthermia requires much improvement to 

destroy cancer cells completely. It is worth mentioning that 

heat generation by nanoparticles is dependent on particle 

size, crystallinity, and colloidal stability of nanoparticles.10-14 

Moreover, heat generation using MNPs is carried out in a 

ferrofluids system under an AC magnetic field in two ways 

as follows: (1) Brownian relaxation (particle rotation) and 

(2) Neel’s spin relaxation (magnetic moment rotation). The 

SPIONs are suspended in proper carrier liquids, which are 

commonly called ferrofluids. In this regard, each particle 

only has a single magnetic domain that can be treated as 

small thermally agitated magnets in the carrier liquid. Besides, 

combining normal liquid behavior with superparamagnetic 

properties is one of the ferrofluids features. Accordingly, 

these properties of the ferrofluids enable us to use it for 

many technical applications.15-18 The average size of these 

nanoparticles for medical application has been reported to be 

10 nm. By paying attention to the size of cells, viruses, 
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proteins, and genes; infiltration and even labeling the cells 

and tissues are important. Because of a high-surface/volume 

ratio as well as strong magnetic dipole-dipole attractions, 

MNPs tend to be aggregated. Therefore, it is vital to control 

the surface modification of these particles.19-21 Correspondingly, 

such modifications can be made by creating a suitable 

coating of polymers and biocompatible molecules such as 

Polyethylene Glycol (PEG), Polyvinyl Alcohol (PVA), poly 

(acrylic acid), dextran, and chitosan on nanoparticles.7,22-25 

There are two major problems in the way of using 

superparamagnetic nanoparticles coated with polymer in 

medical applications. Firstly, these coated nanoparticles lose 

their chemical stability inside the body by absorbing blood 

plasma proteins and increasing particle size. Secondly, in 

some cases, the polymer coating of nanoparticles is removed 

in the physiological environment.26,27 

A more appropriate solution is modifying the MNPs 

without using surface coating. In this study, we presented a 

new physical technique, by surface treatment of nanoparticles 

with argon gas plasma, to modify the surface of nanoparticles 

for improving their crystal structure and magnetization. 

Therefore, due to the crystalline order, the aggregation of 

nanoparticles decreases and heat generation in the hyperthermia 

system increases. 

 

Materials and Methods 

Synthesis of Fe3O4 Nanoparticles 

In this study, Fe3O4 nanoparticles were synthesized using the 

co-precipitation method. Also, starting materials including 

Iron chloride and sodium hydroxide (NaOH) of analytical 

grades were supplied by Merck Inc. (Darmstadt, Germany). 

To synthesize Fe3O4 nanoparticles, the iron salts Fe (II) 

(FeCl2.4H2O) and Fe (III), (FeCl3.6H2O) with a molar ratio 

(Fe3+: Fe2+ = 1:2) were dissolved in 50 ml of deionized water 

at 80 °C. Afterward, sodium hydroxide (NaOH) was added 

to the solution as a precipitator. As soon as the precipitator 

was added, a black solution was formed and the nanoparticles 

grew for 30 min at 80 °C. The nanoparticles were then dried 

for one week at room temperature and consequently a black 

powder was prepared. 

 

Plasma Treatment 

For plasma treatment, the Fe3O4 powders were placed in a 

plasma reactor (Figure 1). The plasma reactor includes a 

cylindrical glass and a capillary copper tube with an external 

diameter of 2 mm which is wrapped around a cylinder used 

as an electrode. Moreover, in order to reduce the contamination, 

the reactor was evacuated to 0.01 Torr using a rotary pump. 

Notably, working gas and pressure of the reactor are argon 

and 0.25 Torr. In this study, the RF generator 13.56 MHz 

was used as a power supply and the plasma treatment was 

applied for 10 and 15 min. 

 

Characterization 

The crystallographic analysis of the obtained samples was 

accomplished using a XRD (Siemens D-500, Philips) with 

specification Cu-kα X-ray and wavelength of 1.54 Å. The 

Vibrating Sample Magnetometer (VSM- Kashan) with a 

maximum field of 15 kOe was also applied at room 

temperature to investigate the effect of plasma treatment on 

the magnetic properties of Fe3O4 Nanoparticles. To determine 

morphology and size distribution, the Scanning Electron 

Microscopy (SEM-LEO 1430VP) was used. The heat 

generated in the hyperthermia test was measured using AC 

magnetic field generator with a frequency of 92 kHz and 

amplitude of 125 Oe. 

 

 

Figure 1. The Experimental Set-up for The RF Plasma Reactor. 
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Figure 2. X-ray Diffraction Patterns of Fe3O4 Nanoparticles Under the 

Plasma Treatment for (a) 10 min, and (b) 15 min. 

 

Results and Discussion 

Figure 2 shows the X-ray diffraction patterns of Fe3O4 

nanoparticles before and after the plasma treatment. Using 

the Scherrer equation, the average crystallite size was obtained 

to be 10.56 nm for the Fe3O4 nanoparticles without any 

modification. For those samples that were modified by argon 

gas plasma, along with increasing plasma power, the average 

crystallite size increased up to 12.6 nm in 10 min. Accordingly, 

this can be attributed to the increase in surface energy of 

nanoparticles due to the collision of energetic ions by argon 

gas. In terms of the principle of energy minimization, the 

system tends to reduce energy and also decrease the surface-

to-volume ratio. As a result, the crystals that were smaller, 

were stuck together and then formed larger crystals. Therefore, 

the energy of the system was minimized by the increased 

size of the nanoparticles. When the plasma treatment time 

was set to 15 min, the crystallite size increased up to 13.5 nm 

along with an increase of plasma power. So, this indicates 

that, as the plasma treatment time increases, the size of the 

nanoparticles also increases. 

 
 

Figure 3. The Effect of Increasing Plasma Power and Treatment Time 

on the Crystallinity of the Nanoparticles. 

 

According to Figure 3 obtained from the X-ray diffraction 

results, it can be seen that with increasing plasma power, the 

crystallinity of the nanoparticles also increases. Correspondingly, 

this can be attributed to the modification of the crystalline 

defects of nanoparticles as well as the growth of crystals 

under the plasma treatment. This means that with increasing 

surface energy under the plasma treatment, incompletely 

synthesized crystals join together to form a more regular crystal. 

Notably, when the treatment time was increased (15 min), 

the greatest shift in the crystallinity percentage occurred at 

50 W and with an increase of plasma power, this percentage 

did not change significantly. In this case, it can be stated 

that, with increasing the plasma treatment time, the highest 

percentage of crystallinity occurs at low power. Moreover, 

with increasing plasma power due to the excessive impact of 

high energy ions on the nanoparticles, the growth rate of the 

crystals reduces. 

Figure 4 shows the magnetic hysteresis loop of the 

nanoparticles at different powers and times before and after 

the plasma treatment. In the samples that were under the 

plasma treatment for 10 min, with increasing plasma power, 

saturation magnetization increased from 52.4 to 60.7 emu/g. 

The increase magnetic ability of the nanoparticles after the 

plasma treatment can be ascribed to the increase in size and 

crystallinity percentage. In addition, when the nanoparticles 

were treated for 15 min, the saturation magnetization 

increased from 52.4 to 64.5 emu/g. Accordingly, this means 

that the increment in the duration of treatment increased the 

magnetic ability. 

As shown in Figure 4, the magnetic remanence of the nano- 

particles slightly decreased after the plasma treatment, which 

means that the plasma treatment has enhanced superparamagnetic 

properties. 
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Figure 4. The Magnetic Hysteresis Loop of the Nanoparticles at Different 

Powers and Times Before and After the Plasma Treatment. 

 

The colloidal stability of the nanoparticles was investigated 

in a ferrofluids system for a 10-day period. As shown in 

Figure 5, the treated samples maintained their colloidal stability 

well after these 10 days. 

Figure 6 shows the SEM image of the nanoparticles before 

and after the plasma treatment. As indicated in these images, 

the crystal structure of the nanoparticles has improved by the 

plasma after observing surface modification and the nanocrystals 

separately. Due to the increased crystalline order and the 

reduced surface irregularities, the nanoparticles were better 

dispersed in water. Also, the nanoparticle aggregation has 

also reduced, which confirm the colloidal stability. 

To study heat generation of the samples, we put the suspensions 

of nanoparticles inside a copper coil and then applied AC 

magnetic field to the samples (Figure 7) for approximately 

30 min. To calculate the generated heat, the Specific Absorption 

Rate equation (SAR) was used as follows (Eq. 1):  

 
 

Figure 5. Colloidal Stability of Nanoparticles for (a) the Untreated 

Sample, (b), (c), and (d) the Samples Treated with 50, 75, and 100W 

(15 min). 

 
 

 
 

Figure 6. The SEM Image of the Nanoparticles Before and After the 

Plasma Treatment (15 min). 

 

  SAR = 
Ms

Mn
 C 

ΔT

Δt
                                          (1) 

 

Where Ms is the mass of suspension including distilled 

water and nanoparticles, Mn is the mass of Fe3O4 nanoparticles, 

C the specific heat capacity of distilled water, and  
ΔT

Δt
  is the 

initial linear slope of the ∆T-time curves. 

In this study, suspension of nanoparticles was prepared by 

dissolving 0.1 g of nanoparticles in 10 ml distilled water for 

20 min using an ultrasonic device. Afterward, the obtained 

samples were placed under the magnetic field of the AC  
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Figure 7. The Experimental Set-up for Hyperthermia. 

 

 
 
Figure 8. The Variation of the Hyperthermia Results of Fe3O4 Nanoparticles 

Under the Plasma Treatment for (a) 10 min, and (b) 15 min. 

 

with a frequency of 92 KHz and amplitude of 125 Oe.  

Figure 8 shows the variation of hyperthermia results of the 

samples before and after the plasma treatment. The SAR 

regarding the curve slope in the range of 0-360 s, for the 

untreated samples, and those samples treated with 50, 75, 

and 100W was 11.45, 16.1, 18.8, and 19.6 w/g, respectively. 

In the untreated sample, with an increase of time, the heat 

generation increased up to 53 °C. When the nanoparticles 

were treated by argon gas plasma for 10 min, with increasing 

plasma power, heat generated elevated and reached 61 °C. 

According to Figure 8b, it can be seen that increasing the 

plasma treatment time increased the blocking temperature of 

the nanoparticles by 13 °C (53-66 °C). 

 

Conclusion 

In this study, the effect of plasma treatment on Fe3O4 

magnetic nanoparticles was investigated. According to the 

results of X-ray diffraction, the plasma treatment increased 

the crystallinity of the nanoparticles and also decreased the 

crystalline defects. With an increase of plasma power and 

treatment time due to the increased particle size and crystalline 

order, the magnetization ability of the nanoparticles also 

increased. The colloidal stability of nanoparticles improved 

after the plasma treatment due to the reduced surface 

irregularities. As a result, with increasing plasma power and 

plasma treatment time due to the increased magnetization 

and colloidal stability, heat generation by these nanoparticles 

increased in a ferrofluids system in the presence of AC magnetic 

field. Moreover, the locking temperature of nanoparticles 

has also increased. Our results confirm that the plasma-

modified nanoparticles can be considered as a good option for 

medical applications, especially for magnetic hyperthermia. 
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