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Introduction  

Rice (Oryza Sativa) is a monocotyledonous plant and a main 

staple food for one-third of the world’s population.1 Rice can 

provide up to 80% of a population daily calories. However, 

rice is exposed to drought and salinity conditions which are 

estimated to decrease global rice yield by 50%.2 Salinity and 

drought are considered as major constraints to rice production. 

Based on past reports, rice production is extremely 

influenced to salt, drought, heat, and other environmental 

stresses during the seedling and reproductive stages.3,4 Plants 

respond to abiotic and biotic stresses by exhibiting many 

physiological and developmental changes. Both salinity and 

drought stress can affect every stage of rice growth; 

seedling, flowering, tillering, spikelet filling, and shoot and 

root growth and hence can highly reduce grain yield.5 Gene 

expression studies can provide an insight to activity of 

expressed genes and can provide an overall picture of cell 

function.6 Over the last three decades, many technologies for 

transcriptome analysis have been introduced however, 

microarray could yet be utilized to investigate and integrate 

the responsive genes under stresses providing a more clear 

insight to an integrated view of the intricacies of cellular 

life.7 Both salinity and drought transcriptome studies on rice 

leaves at seedling stage showed a largely common response 

involving similar pathways and genes.8 Patterns of gene 

expression in response to drought or high-salinity stress 

showed significant overlap within a particular organ type 

and unique patterns among different organs.6 The TFs are 

critical molecules in the regulation of gene expression, 

directly regulating when, where and the rate to which genes 

are expressed. Their functional characterization has categorized 

them in growth, transcription, biotic, and abiotic stresses.9 

TF, as a group of genes, are stimulated by abiotic stress 

which in turn regulate the stress signal transduction and as a 

result change gene expression and thus possibly function in 

stress response.9 The plant TFs and NAC regulate multiple 

processes associated to plant growth and development as 

well as biotic and abiotic stresses in tomato. 

In A. thaliana and in other numerous plants it is stipulated 

that there are several pathways independently responding to 

environmental stresses, suggesting that resistance or sensitivity 
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is regulated at the transcriptional level by complex gene 

regulatory networks.10 Li et al., (2020) showed that TFs as 

key messengers activated under drought and salt stress in 

potato. These results demonstrated that StZEP, StNAC, 

StERF, and StDREB are up-regulated under drought and salt 

stress. In soybean, DREB1 is important for transcriptional 

activator under drought, salt, and cold stresses, encoding an 

ABA receptor family protein in tolerance mechanism. 

OsMYB6 may protect cell membrane integrity of plants in 

response to drought and salinity stresses, enriching different 

tissues namely, roots, leaves, stems, panicles, and seed. The 

OsNAC72 is activated by another TF in the ABA pathway to 

maintain moisture and enhance drought resistance in maize. 

TFs are candidates for engineering stress tolerant plants in 

such a way that a single TF modulates a large set of genes. 

Microarray technology can provide expression profiles of 

thousands of TFs involved in abiotic stress responses.11 The 

objectives of this study were to detect TFs which are 

responsive to drought and salinity stresses, to evaluate TFBs, 

co-expression patterns, and developmental relationships. 

Evaluation of molecular mechanisms of salt and drought 

tolerance in rice can be useful for breeders for the 

development of tolerant varieties. 

 

Materials and Methods 

Data Mining and in silico Analysis of TFs Expression 

Nucleotide sequences of TFs were retrieved from Plant 

Transcription Factor Database (PlnTFDB, http://plntfdb.bio. 

uni-potsdam.de/v3.0/) and Database of Rice Transcription 

Factors (DRTF) (http://drtf.cbi.pku.edu.cn/). The data were 

normalized using RMA algorithm implemented in R software 

(affy) and the intensity values were transformed into log2 

scale.12 To evaluate the responsive TFs expression, microarray 

data required for control and stress conditions was taken 

from 18 different drought and salt treatments to identify 

stress-responsive TFs. Analysis of data were performed 

using fold change which is based on log2 ratio and 

differentially expressed TFs were determined to fold change 

≤ (-2) (down regulated TFs) and ≥ 2 (up regulated TFs). In 

addition, TFs were selected by p<0.05 as statistical significant. 

Probe sets were mapped to MSU Rice Genome Annotation 

Project gene set. To convert probe set to ID genes, DAVID 

sites was utilized. One-way ANOVA revealed significantly 

different TFs among the surveyed genotypes at a 5% 

significant level. Furthermore, the corrected O-value of 

Benjamin-Hookberg allowed a more stringent selection of 

up-regulated TFs showing less than 5% significance level.  

In order to identify the DEGs (TFs) expression, Genevestigator 

program was used (Figure 2). In addition, the perturbations 

tool was used to find out the differential gene expression 

under drought and salt stress. Compendium-wide analysis in 

the Genevestigator program show the fold changes in the 

expression of DEGs under different tissue. The DEGs (TFs) 

under drought and salt stress conditions were used to 

generate TFs expression heatmap using Red/Green color 

scheme where “Red” color shows up-regulation and “Green” 

color shows down-regulation of respective TFs. The anatomy 

tool was subjected to evaluate the expression potential of 

each TF using microarray OS-AFFY-RICE-0 dataset. The 

interaction among all the 80 TFs were determined using the 

“The Rice Interactions Viewer” web based on the publicly 

available Botany Array Resource (BAR) expression browser 

tool (http://bar.utoronto.ca/welcome.htm).13 

 

Gene Ontology (GO) Enrichment Analysis and Characterization 

of TFs 

Classification of differentially expressed TFs by agriGO 

indicates probable pathways captured by the responsive TFs 

involved in drought and salt stress. This tool generated 

functional classification of a list of AGI IDs based on the 

GO database used to identify the biological processes, 

molecular functions, and cellular component. 

 

Selection Pressure and TFBs Analysis 

The nucleotide diversity, Tajima’s D test, and Fu test were 

carried out using DNASP4.10. The number of non-

synonymous substitutions per non-synonymous site (dN) to 

the number of synonymous substitutions per synonymous 

site (dS) were calculated using the Nei and Gojobori method 

in SNAP software. This ratio measures evolutionary pressures 

on protein-coding region. Promoter regions of 80 TFs were 

analyzed using PlantPAN software (http://plantpan2.itps. 

ncku.edu.tw/). For each gene, 1500 bp upstream of the 

transcription initiation region was considered as a promoter 

sequence. Investigation of TFBs was performed using the 

PlantPAN database. 

 

Results and Discussion 

Analysis of Differentially Expressed TFs under Drought 

and Salt Stress 

Heat map is representative of differentially expressed TFs. 

The expression of the TFs under 18 different drought and 

salt experiments are represented in the heat map in the color 

scale of -2 to 2 in red-green color scheme. The conditions 

are represented in columns while TFs are shown in rows. As 

seen in Figure 1, the genevestigator profile shows a tightly-

specified expression pattern, with the highest transcript 

abundance in seedling 10-d after germination-salt (CSR27 

genotype), 7-d-old seedling-drought (Indica genotype), root-

panicle-elongation-stage-drought (IR64 genotype), and 

root-tillering-stage-drought (IR64). The transcripts were up-

regulated during all developmental stages in rice in response 

to salinity and drought. Our results showed that most of the 

differentially expressed TFs were responsive to drought and 

salinity stress, with down-regulation exceeding the up-

regulation of TFs. The number of down-regulated TFs in 

http://www.biotechrep.ir/


http://www.biotechrep.ir 

Responsive Transcription Factors involved in Drought and Salt Stress in Rice  

 

 J Appl Biotechnol Rep, Volume 8, Issue 4, 2021  |  408 

leaves was higher than the up-regulated TFs, while the 

opposite occurred in roots under drought stress. However, 

the number of up-regulated TFs in seedling was higher than 

the down-regulated TFs, whereas the opposite occurred in 

roots under salt stress. In contrast with previous studies, up-

regulation occurred in roots and seedling, while down-

regulation observed in leaves was associated to TFs in multiple 

signal pathways to drought and salt in Populus davidiana.14 

 

 
 

Figure 1. Heat Map Analysis of Tolerance-responsive TFs in Response to Drought and Salt Stress. 

 

 
 

Figure 2. Anatomy Expression Profiles of Responsive TFs at Different Developmental Stages of Rice. 

 

 

In silico Analysis of TFs Expression under Drought and 

Salt Stress 

Meta-analysis of Genevestigator microarray dataset was 

performed on rice under drought and salt stress. The 

corresponding TFs, LOC_Os06g08480 (CHD3-type chromatin 

remodeling factor PICKLE), LOC_Os05g46330 (MYB 

family transcription factor), LOC_Os08g10560 (NF-YC 

family protein), LOC_Os08g13090 (BTB/POZ domain 

containing protein), LOC_Os05g41172 (histone-lysine N-

methyltransferase), LOC_Os02g06584 (zinc finger C-x8-C-

x5-C-x3-H type family protein), and LOC_Os05g50130 

(HB-other family protein) are strongly expressed in cell 

culture under drought and salt stress conditions (Figure 2). 

A pervious study demonstrated that BTB domain and zinc 

finger genes play a critical role in many biological processes 

by changing the transcriptional activities of some downstream 

genes.15 BTB domain is up-regulated under drought and 

salinity thereby making them highly flexible and involved 
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in methylation of lysine residues in histones, nucleosomes 

and other proteins.16 It was supported that histone methylation 

was the largest epigenetic regulatory in response to abiotic 

stress. Significantly, the MYB family transcription factor 

(LOC_Os01g74590), NF-YC12 (LOC_Os10g11580), and 

ZIM motif family protein (LOC_Os03g27900) are strongly 

down-regulated in seedling and shoot. Also, the MYB 

family transcription factor (LOC_Os01g74590), NF-YC12 

(LOC_Os10g11580), and zinc-binding protein (LOC_Os01g33350) 

are down-regulated in shoot and rhizome under drought and 

salt stress conditions. The most of NF-Y genes are highly 

expressed under drought, however, it has been shown that 

they can be down-regulated in response to limited water 

availability.17 Other genes down regulated included the ZIM 

domain which acts as a mediator among JAZ proteins. The 

ZIM domain caused to recruit general transcriptional 

repressors. Since plants are influenced by abiotic and biotic 

stresses, ZIM can be introduced as key regulators of defense 

signaling pathways.18 In this study, PICKLE is up-regulated 

in drought and salt stress in rice. This gene plays critical 

roles in the repression of genes that are involved in the 

growth and development in A.thaliana. PICKLE encodes 

ATP-dependent chromatin remodeler that limit the expression 

of developmental regulators. According to findings it can be 

stated that transcriptional changes in response to stress are 

often accompanied by modifications in nucleosome occupancy. 

Accordingly, PICKLE is one of several ATP-dependent 

chromatin-remodeling complexes that are required for adapting 

against environmental stresses in various organisms. MYB 

as key components regulates and modulates adaptive 

pathways in response to ABA, drought, salinity, and cold.  

 

Analysis of TFBs in Responsive TFs under Drought and 

Salt Stress 

In rice, TFBs (AP2, bZIP, Mby/SANT, bHLH, Homeodomain, 

GATA, B3, AT-Hook, EIN3, C2H2, CG-1, and LEA-5) 

have been identified on the promoter regions of both strands, 

and are mostly located in the upstream region of 1000 bp. 

The description of the first three most frequently occurring 

TFBs of the total detected elements is provided in Figure 3. 

Our analysis revealed that among TFs, AP2 had the highest 

number of TFBs whereas, the lowest number of TFBs was 

observed in LEA-5 genes under drought and salinity 

stresses. Previous study showed that several families of 

stress-responsive TFs have been characterized under drought 

and salt stress such as, NAC, bZIP, WRKY, MYB, and 

AP2/ERF that formed stress regulation network in 

Arabidopsis. Our findings are in agreement with study on 

Arabidopsis that AP2, bZIP, MYB induced under drought 

and salt stress. In Sorghum, LEA-5 is induced due to its 

increased tolerance under drought conditions.19 Based on 

reports, down-regulated TFs, e.g. AtMYB60, are related to 

drought. MYB is down-regulated and as a result causes a 

considerable reduction of stomatal opening to increase 

tolerance against drought stress.20 However, other reports 

have revealed that MYB enhanced tolerance to drought and 

salt stress and higher survival rates in maize.21 AP2 is up-

regulated and is involved in a wide range of stress tolerance, 

enabling it to form an interconnected stress regulatory 

network. Our results showed that bZIP was activated in both 

salinity and drought stresses. Previous studies have accurately 

revealed that bZIP was induced under stress conditions like 

heat, salinity, and dehydration.22 In accordance with previous 

studies, transcription down regulated which repressed gene 

expression in response to diverse abiotic stresses are also 

important tools in managing drought tolerance.23 

 

Gene Ontology Enrichment Analysis 

To identify the differentially expressed TFs associated with 

drought and salt TFs, gene ontology analysis was performed 

in the biological processes including regulation of RNA 

metabolic, RNA metabolic, and developmental processes. 

The cellular component encompasses intracellular and nucleus 

and the molecular function is related to DNA binding, 

organic cyclic compound binding, heterocyclic compound 

binding, ion binding, and metal binding (Figure 4). In cotton, 

the GO term showed that TFs are involved in plant hormone 

signal transduction and metabolic pathways enrichment 

under drought and salt stresses.24 Based on a recent report, 

TFs were identified in major metabolic pathways such as the 

biosynthesis of amino acid, lipid, and carbohydrate.25 Our 

results suggested that further investigation into the functions 

of responsive TFs and metabolic pathways can aid 

researchers to gain a better understanding of stress tolerance. 

 

Analysis of Co-expressed TFs in Network 

The interactive network analysis of all the significant TFs 

revealed a co-expressed TFs network (Figure 3). In network, 

LOC_Os06g08480 and LOC_Os05g46330 seemed to be the 

central proteins encoding for “CHD3-type chromatin remodeling 

factor PICKLE and MYB family transcription factor”. In 

addition, a few co-expressed TFs were also observed in our 

network which included histone acetylation/deacetylation 

and chromatin remodeling events in nucleus and mitochondria. 

Other TFs were involved in editing mitochondria. Most of 

the co-expressed TFs pretend to be localized mostly in 

mitochondria (light blue), cytoplasm (purple) and nucleus 

(blue) and encode mainly for the homeobox proteins such as 

LOC_Os08g19650 and LOC_Os10g28040 (histone acetyltransferase 

GCN5) (Figure 3). In analysis network, only few proteins 

are located in the chloroplast (green) and plasma membrane 

(orange). The proteins localized in the chloroplast (green) 

are mainly translation proteins such as LOC_Os11g08080 

(SWIRM domain containing protein) and LOC_Os06g08480 

(Phosphatidylinositol kinase and FAT containing domain 

protein). Based on our results, most of the TFs encoding 
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proteins are involved in histone acetylation/deacetylation 

and homeobox protein in nucleus (Figure 5). A recent study 

indicated that chromatin change mediated by histone 

modification can be managed dynamically to conserve gene 

and genome activities.26 According to another report, H3K3me3 

modification is involved in the activation of NCED3 which 

encodes a key enzyme in the ABA biosynthesis under 

drought stress conditions. In accordance with our finding, 

the expression of HvGCN5 was induced by ABA treatment 

in barely (Hordeum vulgare L.).27 However, another researcher 

suggested that HD2 genes play important roles in resistance 

to environmental stress in both monocot and dicot plants.28 

A Pervious study suggests that nucleosome modification 

may occur under drought and salt stress. For example, 

PICKLE exhibited under drought, salt, and cold stress which 

is required for the deposition and maintenance of the 

repressive chromatin mark H3K27me3. H3K27me3 plays a 

key role in prolonged cold stress memory during vernalization. 

PICKLE acts in an epigenetic pathway that examines 

H3K27me3 homeostasis in Arabidopsis. 

 

 
 

Figure 3. Histogram Showing the Frequencies of Responsive TFs of TFBs under Drought and Salt Stress in rice. 

 
 

 
 
Figure 4. Gene Ontology (GO) Distributions for the Responsive TFs in Drought and Salt Stress. AgriGO database defined GO under three categories, 

(a) biological processes, (b) molecular functions and (c) cellular component. 

 

Selection Pressure in Tolerance-responsive TFs under Drought 

and Salt Stress 

Two approaches (Tajima’s D test, Fu and Li’s D*) were 

utilized to execute the neutrality test. Analysis of 110 nucleotide 

sequences showed that Tajima’s test was significant (D = 

8.95 where, D = Tajima test statistic). Tajima's test indicated 

the presence of balancing selection in expressed TFs under 

drought and salt stress conditions (Table 1). These results 

were in agreement with other researchers who reported that 

the drought-tolerance TFs are expected to have evolved under  
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Table 1. Results from Tajima's Neutrality Test in Responsive TFs 

m π D dS/dS Fu's Fs statistic 

110 0.72 8.95 1.03 -13.84 

 
 

balancing selection.29,30 Our results support this perception 

because of a higher genetic diversity observed in drought-

responsive than non-responsive genes.29,31 Another neutrality 

test in Table 1 showed that Fu and Li’s test gave a significant 

value of -13.84. These results revealed that there is an excess 

of rare mutations in the expressed genes under drought and 

salt stress conditions.32 The ratios of dN/dS, indicating protein 

evolution, were computed within and among the defined 

groups for rice (Table 1). Synonymous and nonsynonymous 

ratio and nucleotide diversity levels were highly 

significant.33,34 A ratio higher than one indicates a balancing 

selection. Results showed that a balancing selection occurred 

on drought and salt stress responsive TFs, adapting to the 

extreme abiotic and biotic stresses. Other reports have 

clearly revealed that balancing selection has occurred on 

drought and salinity tolerance responsive genes due to the 

maintenance of adaptive polymorphism through multi-locus 

balancing selection in this heterogeneous environment.35,36 

 
 

 
 
Figure 5. Co-expressed Network of All 110 TFs in Rice Genotypes. The “Rice Interactions Viewer” (http://bar.utoronto.ca/interactions/cgi-

bin/rice_interactions_viewer.cgi) web was used to predict the interactions. 

 
Conclusion 

This study presents a comprehensive overview of transcriptome 

modifications of responsive TFs under drought and salt 

stress which can help insight the molecular basis of drought 

and salt tolerance in rice. Analysis of responsive TFs to 

drought and salt stress conditions using TFBs, network of 

co-expressed TFs, expression patterns in different tissues 

were performed based on bioinformatics tools. Based on our 

results, some TFs are down-regulated to reduce photosynthesis 

rates related to stomatal control under drought and salt 

stress. However, some TFs conserve cell components 

through decreasing transcription using methylation residues 

in histones under drought and salt stresses. Gene expression 

data showed that regulated PICKLE and MYB family 

transcription factor were up-regulated and controlled 

nucleosome modification was limited under drought and 

salt conditions. Modification of histones are affected by up 

regulation of BTB, PICKLE and MYB while down 

http://www.biotechrep.ir/
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regulation of ZIM domains regulated repression or activation 

of transcription. TFs associated with chromatin-based 

modifications can be considered as important proteins for 

increasing drought/salt tolerance in plant genetic engineering 

improvements. Understanding the above mentioned mechanisms 

can enable us to improve stress tolerance in rice. 
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