
Introduction
Folate or vitamin B9 is a water-soluble vitamin composed of 
several conjugated molecules namely pteridine ring, para-
aminobenzoic acid (PABA), and glutamic acid.1,2 Folate is 
required for normal cell fission and growth. It functions as 
a cofactor involved in various metabolic reactions in the 
body, such as synthesis, repair, DNA methylation reactions; 
nucleotide synthesis; and amino acid metabolism.3,4 Folate 
is needed in a certain amount, especially during pregnancy 
and lactating period. The daily recommended intake of 
folate are 65 µg/d of dietary folate equivalents (DFEs) for 0-6 
month infants as adequate intake (AI), 80 µg DFE for 7-12 
month infants (AI), 150 µg DFE for 1-3 year old children as 
recommended dietary allowance (RDA), 200 µg DFE for 4-8 
year old children (RDA), 300 µg DFE for 9-13 year old children 
(RDA), 400 µg DFE for 14-18 year old teens (RDA), 400 µg 
DFE for adults 19 years old and older (RDA), 500 µg DFE for 
lactating women (RDA), and 600 µg DFE for pregnant women 
(RDA).5 If folate requirement is not sufficiently met, the body 
will experience folate deficiency and trigger various diseases 
such as anemia, neural tube defects, homocysteinemia, 
cardiovascular disease, and cancer.4,6-9

Folate cannot be produced in the body, therefore, it must be 
obtained from food intake. It is naturally present in various 

types of food, such as cereals, fruits, vegetables, spices, nuts, 
eggs, and cheese.10 However, natural folate has unstable 
properties, and its content is easily reduced during washing 
and processing.11,12 Alternatively, folic acid, a synthetic form 
of folate, is generally chosen as the main source in fulfilling 
the daily needs as a food fortificant and food supplement due 
to its stability.13,14 However, the metabolic process of folic acid 
in the body is relatively slow hence the body is not able to 
completely convert folic acid in large quantities. This results 
in a substantial accumulation of unmetabolized folic acid in 
cells. High levels of unmetabolized folic acid in the blood 
will cause a variety of metabolic disorders, such as masking 
symptoms of vitamin B12 deficiency, cognitive impairment, 
reducing the immune system, and cancer.15,16 The emergence 
of health problems related to the use of synthetic folate has 
prompted many researchers to look for other, more stable, 
safer and more efficient sources of natural folate. 

Lactic acid bacteria (LAB) are known to produce folate 
both intracellularly and extracellularly.12,17-19 Intracellular 
folate is in the intact cells, while extracellular folate is secreted 
to the growth medium. Extracellular folate is in the form of 
monoglutamate, thus it has a higher bioavailability compared 
to intracellular folate which is in the form of polyglutamate. 
Polyglutamate requires an enzymatic conjugation process 
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before being absorbed by the body.12,20,21 Therefore, 
extracellular folate secreted to the media can be effectively 
and readily used as an alternative source of natural folate. 

As a fermentation medium, milk is an ideal matrix because 
it contains nutrients that are suitable for the growth of 
LAB and contains folate-binding proteins that can increase 
the stability of folate synthesized during fermentation.22-24 
However, during fermentation, most LAB use folate for their 
growth, thereby reduce the amount of folate in the product.24 
The ability of LAB to produce folate depends on fermentation 
conditions, medium types, the presence of folate precursors, 
and several other factors.17,20 In this review, the utilization of 
LAB in increasing natural folate content in fermented milk 
products that could be used to prevent folate deficiency will 
be discussed. 

Folates: Types, Sources, and Stability
Folate is the generic term of conjugated compounds formed 
by a pteridine ring linked to PABA and one or more 
L-glutamates. In nature, folate is in the form of 5-methyltetra-
hydrofolate (5-MTHF), 5-formyltetrahydrofolate (5-FTHF), 
10-formyltetrahydrofolate (10-FTHF), 5,10-methylenetetra-
hydrofolate, 5,10-methenyltetrahydrofolate (5,10-methenyl-
THF), 5-formimino tetrahydrofolate, 5,6,7,8-tetrahydrofo-
late (THF) and dihydrofolate (DHF). The forms of THF and 
MTHF are the two most important folates for human body. 
Folate in THF form has a significant role as a cofactor in 
carbon-1 transfer for DNA synthesis, while the MTHF form is 
the main form transported and stored in the human body.1,10,25

Natural folate is found in various types of plants, animal 
organs, bacteria, and yeast, and is generally detected in 
heterogeneous forms, characterized by one unit of carbon 
atom (C) connected to the positions of N5 (R1) and/or N10 
(R2) (Figure 1a), such as methyl (5-CH3), methylene (5,10-
CH2), formimino (5-CH=NH), formyl (5- or 10-CHO), and 
methenyl (5,10-CH). In flowering plants or angiosperms, 
folate is mostly in the forms of methyl (45%-65%) and formyl 
(30-55%), whereas in vegetables and fruits, it is mostly in the 
form of 5-MTHF, and a few of 5- and 10-FTHF. In animal 
organs (liver and kidney), about 40% of folate is found in the 
form of methyl derivatives.10,26 Meanwhile, the most abundant 
folate forms in kefir yeast strains are 5-MTHF (43%-59%), 
5-FTHF (23-38%), and THF 19%-23%.27

Among bacteria, LAB and bifidobacteria such as 
Streptococcus thermophilus, Lactobacillus plantarum, 
Lactobacillus fermentum, Lactococcus lactis, Bifidobacterium 
longum, Pediococcus acidilactici, and Weissella confusa, can 
produce folates naturally in numerous fermented food.12,29-

31 The dominant forms of folate synthesized by LAB in milk 
are THF, 5-MTHF, and 5-FTHF (Table 1), while in liquid 
media, S. thermophilus and L. lactis produce 5-FTHF and 
5,10-methenyl-THF.32 However, the variety of synthesized 
folate forms depends on each strain and species of 
bacteria.1,10,19,25,33-35

In addition to the substituent group connected to N5 and/or 
N10 of the pteridine ring, natural folate forms also vary in the 
amount of glutamic acid residue conjugated to pteroic acid, 
namely monoglutamate or polyglutamate. Most of the folates 

in plants, animals, and microbes are in the reduced form of 
THF-polyglutamate, where two double bonds of the pteridine 
ring are reduced, and few are found in the form of free folate 
(monoglutamate). Monoglutamate folate can be found in milk 
(60%), soybeans (50%), and orange juice (>30%), whereas 
polyglutamate forms can be found in cabbage (hexane and 
heptaglutamate), orange juice (pentaglutamate), liver and 
kidney (pentaglutamate).2

 In bacteria, there are two types of synthesized folate, 
namely intracellular and extracellular folate. Intracellular 
folate is mostly present in the form of pteroilpentaglutamate (5 
glutamate residues), whereas extracellular folate tends to be in 

Figure 1. Folate Structure. (a) The main structure of folate with different 
substituents at R1 and R2.

28 (b) The structure of folic acid.10

Table 1. Forms of Folate Synthesized by LAB in Fermented Milk

Bacterial Species
Forms of Synthesized Folate

Ref.
THFa 5-MTHFb 5-FTHFc 5,10-methenyl 

THFd

S. thermophilus +e + + -f 25

Lactobacillus acidophilus + + + - 25

Bifidobacterium longum + + + - 25

Lactobacillus bulgaricus + + + - 25

S. thermophilus - + - - 33

S. thermophilus + + + - 36

Lactobacillus bulgaricus + + + - 36

Lactobacillus lactis + + + - 36

Lactobacillus helveticus + + + - 36

Lactobacillus lactis ssp. 
cremoris

+ - - - 34

Lactobacillus lactis ssp. 
lactis

+ + - - 34

Lactobacillus plantarum - + - - 35

Lactobacillus delbrueckii - + - - 35

Bifidobacterium 
adolescentis

+ - - - 35

Bifidobacterium 
catenulatum

+ - - - 35

S. thermophilus + + - - 19

a 5,6,7,8-tetrahydrofolate; b 5-methyltetrahydrofolate; c 10-formyltetrahydrofolate; 
d 5,10-methenyltetrahydrofolate; e + means detected; f  - means not detected or 
not analysed.
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the form of pteroilmonoglutamate (1 glutamate residue). The 
form of synthesized folate by LAB also depends on the species. 
In Lactococcus lactis species, intracellular folate has the form 
of tetra-, penta-, to hexaglutamate, and extracellular folate in 
the form of mono-, di-, to triglutamate. In S. thermophilus 
species, both intracellular folate and extracellular folate, 
have mono-, di-, and triglutamate forms. Most of the folate 
produced by species L. lactis, and other species such as 
Leuconostoc spp., Propionibacteria spp., and Bifidobacteria 
spp., are intracellular folates and are not secreted to the 
media, while S. thermophilus species produce extracellular 
folate which is higher than intracellular folate.21,32,37

Based on its variations, natural folate has different 
stability. The stability order is 5-FTHF> 5-MTHF> THF, 
studied during fruit and vegetable processing. These folate 
forms become rapidly unstable due to the longterm contact 
with water, the presence of oxygen, the low temperature, 
and the acidic condition. Leaching into the water and the 
oxidative degradation become two main mechanisms of 
folate losses.26 Furthermore, the oxidation will reduce folate 
bioavailability due to the conversion of folate into an inactive 
form, p-aminobenzoyl glutamate, significantly reducing its 
activity.20

 Compared to natural folate present in the reduced form, 
folic acid is in the fully oxidized monoglutamate form. Shown 
in Figure 1b, the structure of folic acid is similar to the natural 
folate form but has fewer hydrogen atoms. This, chemically 
leads to a more stable form, hence produced synthetically and 
found in dietary supplements or fortified foods. However, 
although not naturally found in foodstuffs, some vegetables 
such as spinach, chickpeas, tomatoes, green beans, and 
cabbages were reported to have folic acid content in small 
amounts. The folate degradation during analytical procedures 
become the likely reason for folic acid being present in plant 
matrixes.10,26,38

Due to the unstable characteristics, natural folate contained 
in food ingredients is easily damaged or reduced due to the 
harvesting process, storing, distributing, and processing.12,39-41 
Therefore, usually synthetic folate in the form of folic acid 
is chosen as an alternative to meet the demands through 
fortification or food supplement programs because of its 
stable characteristic and due to the act, that it is not easily 
degraded.6,13 

Folate-Producing Lactic Acid Bacteria
Lactic acid bacteria are commonly present or used in the 
fermentation process of various types of food, such as 
fermented dairy products and its derivatives including yogurt, 
cheese, kefir, and others; fermented fruits and fermented 
vegetables. LAB used for fermentation are usually the genus 
of Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and 
Streptococcus. The LAB in milk fermentation can be directly 
added as a starter culture, or naturally available because milk 
is a natural habitat of LAB.42

During fermentation, LAB convert lactose into lactic 
acid as the main end product, which increases the acidity 
and suppresses the growth of pathogenic bacteria, thereby 
increasing product safety. These bacteria also have a proteolytic 

activity that can degrade milk protein into components that 
contribute to the texture and the organoleptic properties of 
the product.43 Furthermore, LAB are also known to have 
the ability to synthesize various groups of vitamin B such as 
folate (B9), riboflavin (B2), and cobalamin (B12), which can 
increase the nutritional value of the products.44 

The group of LAB known to be able to synthesize folate, 
consist of various genus, species, and strains (Table 2). These 
bacteria primarily synthesize folate to meet their own needs. 
LAB and most of the other organisms (prokaryotic and 
eukaryotic) require folate cofactors in a reduced form as 
acceptors or donors of carbon units. This cofactor is involved 
in various biosynthetic processes such as the formation 
of methionine, purine, thymine, and various degradation 
reactions.7

Folate Biosynthesis and Secretion by LAB
The LAB have different ways of fulfilling their folate needs. 
Some LAB, especially from S. thermophilus, Lactobacillus 
plantarum, and L. lactis species, can synthesize folate through 
de novo pathway for folate biosynthesis. Other LAB tend to 
consume folate in the media hence their growth depends 
on the presence of folate in the media. In fact, the behavior 
of LAB to meet their folate needs is very different between 
strains. Several strains of bifidobacteria such as B. adolescentis 
MB 114, B. adolescentis MB 115, and B. pseudocatenulatum 
MB 116, do not produce folate when folate is available in the 
media. Several other strains such as B. adolescentis MB 227, 
B. adolescentis MB 239, and B. pseudocatenulatum MB 237, 

Table 2. Species of Folate-Producing LAB

Species Literature

Streptococcus thermophilus 17-19,25,31-33,35,37,45,46

S. lutetiensis, S. infantarius 31

Lactobacillus fermentum 12,18

L. acidophilus 18,25,47

L. rhamnosus, L. reuteri 18

L. delbrueckii ssp. bulgaricus 17,25,32,35,45

L. plantarum 12,30,32,35,46-50

L. helveticus 31,51 

L. paraplantarum 12,50

L. salivarius 50

L. sakei, L. coryniformis 30

L. casei 47

L. johnsonii 52

Leuconostoc lactis, Leu. paramesenteroides 32

Lactococcus lactis 20,31,32,34,48,53

Bifidobacterium lactis 45

B. animalis, B. breve 29,54

B. infantis 45,54

B. dentium 54

B. bifidum 29,54

B. longum 25,29,33,54 

B. adolescentis, B. catenulatum 29,35,54

B. pseudocatenulatum 29,54

Pediococcus pentosaceus 50

P. acidilactici 12,50

Weissella cibaria 55

W. paramesenteroides 31

W. confusa 30,55
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continued to produce folate even though folate was available 
in the media.54 This shows that the ability of LAB to synthesize 
folate is dependent on the strains.12,24

The folate biosynthesis pathway in microorganisms 
consists of several parts based on the three main constituents 
of folate structure namely pteridine, PABA, and glutamate. 
The pteridine is made from guanosine triphosphate (GTP), 
synthesized in the purine biosynthetic pathway, whereas 
PABA comes from chorismate, involved in the same pathway 
as the aromatic amino acid pathway, glycolysis, pentose 
phosphate, and the shikimate pathway.21 Basically, many 
microorganisms can synthesize glutamate by the conversion of 
α-ketoglutarate from glycolytic intermediates. However, most 
LAB except L. lactis ssp. lactis are reported to be not able to 
produce glutamate due to the lack of isocitrate dehydrogenase 
and glutamate dehydrogenase activities, shown to be the 
main enzymes in the formation of glutamate.56 Therefore, the 
ability of LAB in synthesizing folate is also highly dependent 
on the availability of glutamate in the media.

In overview, the folate biosynthesis pathway of LAB 
is catalyzed by nine enzymes, converting GTP to THF-
polyglutamate (Figure 2). The biosynthetic process starts 
with the conversion of GTP to dihydroneopterin, involving 
the activities of three enzymes, namely GTP cyclohydrolase 
I, catalyzing the reaction of GTP into dihydroneopterin 
triphosphate; dihydroneopterin triphosphate 
pyrophosphohydrolase, converting dihydroneopterin 
triphosphate to dihydroneopterin monophosphate; and 
a-specific phosphatase, producing dihydroneopterin. 
Furthermore, dihydroneopterin is converted to 
6-hydroxymethyl-7,8-dihydropterin by dihydroneopterin 
aldolase, and is further changed to 6-hydroxymethyl-7,8-
dihydropterin pyrophosphate (DHPPP) by hydroxymethyl 

dihydropterin pyrophosphokinase. Afterwards, DHPPP 
fuses with PABA by dihydropteroate synthase enzyme. 
Incorporating C-N bonds from DHPPP to PABA forms 
dihydropteroate, and is further conjugated with glutamate 
by dihydrofolate synthase, producing DHF. Moreover, DHF 
will be reduced by dihydrofolate reductase to the active form 
of THF. In the end, glutamate residues are added in large 
amounts by the folylpolyglutamate synthase enzyme to form 
THF-polyglutamate.21,57

The distribution of intracellular and extracellular 
folate synthesized by LAB depends on the degree of 
polyglutamylation or the pH of growth medium. In L. lactis 
species, intracellular and extracellular folate distribution 
only depends on the degree of polyglutamylation and is not 
influenced by pH. Intracellular folate has a long polyglutamic 
tail that is more than three glutamate residues (4, 5, and 6 
glutamate residues), whereas extracellular folate has shorter 
polyglutamate tails namely mono-, di-, to tri-glutamate. Long 
polyglutamic tails (more than 3 glutamate residues) cannot 
be transported through cell membranes, so it tends to remain 
inside cells. Longer glutamate tail increases folate retention 
in the cell. This is because glutamate has a negatively charged 
carboxyl group (pKa of 4.6) so that the more glutamate residue 
is bound to the polyglutamic tail, the more negative the folate 
content is and as a result, increases the folate retention in 
the cell.32 Therefore, the intracellular folate release is highly 
dependent on cell destruction as it passes through the 
digestive tract.58 

In S. thermophilus species, intracellular folate and 
extracellular folate have a short polyglutamic tail, which 
is not more than three glutamate residues. Thus, the 
folate distribution does not depend on the degree of 
polyglutamylation but is dependant on the pH of the media. 

Figure 2. Folate Biosynthesis Pathway in LAB.21,57
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Cells that grow in low pH will produce higher extracellular 
folate than cells that grow in high pH. When the media pH 
is low, intracellular pH becomes low too. This condition 
will cause higher intracellular folate to be protonated and 
become neutral so that it is easily transported through the cell 
membrane. In L. lactis, due to the long polyglutamate tail of 
the intracellular folate (more than three glutamate residues), a 
decrease in intracellular pH does not cause intracellular folate 
protonation so that it cannot be transported across the cell 
membrane.32 

Intracellular folate protonation due to low pH can explain 
that in certain species of LAB, such as S. thermophilus, the pH 
of the media greatly determines the ability of LAB to synthesize 
intracellular and extracellular folate. Low pH can increase the 
secretion of extracellular folate, and high pH can maintain 
intracellular folate retention. In addition to maintaining 
intracellular folate retention, high pH can also increase the 
ability of LAB to synthesize folate. This is because the enzymes 
involved in folate biosynthesis in various microorganisms 
have optimum activity at higher pH which is between 7.3 
and 9.5. Thus, the activity of these enzymes in synthesizing 
folate can be increased by increasing external pH which can 
create more alkaline cell cytosolic conditions.32,35 However, 
even though low media pH can increase extracellular folate 
secretion in certain LAB species, this condition will lead to a 
decrease in extracellular folate concentration. This is due to 
the fact that extracellular folate has an unstable form so that 
acidic pH in the media will cause folate destruction reactions. 
This shows that the acidity of pH does not positively correlate 
with folate production by LAB.35,59

The ability of LAB to synthesize folate is also associated with 
the role of 3 main genes namely folB, folK, and folP. These 
genes can encode the formation of dihydroneopterin aldolase 
(DHNA), hydroxymethylpterin pyrophosphokinase (HPPK), 
and dihydropteroate synthase (DHPS), which are enzymes 
involved in the formation of THF molecules in de novo folate 
biosynthesis.19 Almost all bacteria with folK and folP genes are 
assumed to have an ability in synthesizing folate. However, 
the detection of these genes is not sufficient to estimate its 
capacity in folate production.12 

Effect of Precursors on Folate Production by LAB
In addition to having certain genes, the ability of LAB to 
produce folate is associated with their ability to synthesize de 
novo PABA, formed through the shikimate pathway and the 
conversion of chorismate to PABA. In general, Lactobacillus 
(except Lactobacillus plantarum) strain can not synthesize 
de novo PABA hence its ability in producing folate is highly 
dependent on the availability of PABA in the media,7 or 
instead will consume folate available in the media for its 
growth.32 The L. lactis and S. thermophilus are reported to be 
able to produce folate, accumulate folate in cells, and secrete it 
into the media. Both strains can produce folate without PABA 
supplementation because they have all the genes needed in 
the shikimate pathway and the conversion of chorismate into 
PABA.7,20,21,57

The production of extracellular folate by LAB such as L. lactis 
can be increased by adding PABA as a folate precursor. The high 

amount of PABA can inactivate folypolyglutamate synthetase, 
which functions in the extension of the polyglutamic tail in 
folate molecules. When the amount of PABA in the media 
is increased, the extension of the polyglutamic tail on the 
folate molecule in the cell becomes inhibited. As a result, 
monoglutamate folate production elevates. Monoglutamate 
folate is known to have a lower affinity for most folate-
dependent enzymes, compared with polyglutamate folate, 
therefore the retention of monoglutamate folate in cells will 
decrease. Low folate retention in cells will raise the amount of 
folate secreted to the media. In other words, adding PABA in 
the media will promote extracellular folate production, being 
higher than intracellular folate.20,32,57,60

The inactivation enzyme mechanism of folypolyglutamate 
synthetase is also supported by the results of a study,57 where 
metabolic engineering of overproduction of PABA in folate-
producing strain of L. lactis does not result in an increase in 
total folate synthesized but causes changes in the distribution 
of folate across the cytoplasmic membrane. The intracellular 
folate concentration is measured to be relatively lower than 
extracellular folate secreted to the media. 

In addition to PABA, in folate biosynthesis, glutamate as 
a folate precursor is also needed along with dihydropteroate 
for the synthesis of DHF, further converted to THF. However, 
most LAB are reported to be auxotrophic of glutamate, 
hence its requirement has to be fulfilled by its availability 
in the media. The availability of glutamate residue in the 
media also plays a role in the extension of the polyglutamate 
tail (THF-polyglutamate) which has high intracellular 
retention. Therefore, the more glutamate available, the higher 
intracellular folate is produced and the lower extracellular 
folate secreted.57 However, by the addition of glutamate in a 
certain concentration (75 μmol/L) in the media, extracellular 
folate produced by L. lactis becomes doubled when fermented 
for 8 hours incubation at 37°C in milk media.20 No literature 
has reported the mechanism of glutamate in increasing 
extracellular folate production. Unlike PABA and glutamate, 
the addition of purine bases in the media (i.e. adenine, 
guanine, and xanthine), needed for the synthesis of GTP as a 
folate precursor, can support the growth of LAB but does not 
affect the folate biosynthesis. Essentially, folate biosynthesis 
is carried out to meet the growth needs of the bacteria 
itself. However, the availability of purines in the media can 
directly replace the role of folate for growth, thus bacteria 
automatically do not synthesis folate in their cells.57

Folate Production in Fermented Milk Products
Milk is an ideal source of essential nutrients for humans, 
both children, and adults, for the body’s development and 
maintenance. Milk contains enzymes, proteins (casein, 
serum proteins, and vitamin-carrying proteins), various 
minerals (calcium, nickel, selenium, zinc, and iron), various 
vitamins (vitamin A, riboflavin, niacin, folate, and vitamin 
C), immunomodulatory, and antimicrobial compounds such 
as immunoglobulins, lactoperoxidase, and lactotransferrin.61 
Because of its complex nutritional content, milk has become 
an important part of daily nutritional intake throughout the 
globe.51 Cow’s milk and goat’s milk are the most popular 
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and widely consumed milk. Cow’s milk and goat’s milk 
have different contents of protein, fat, and enzyme which 
affects the physical and sensory characteristics of the 
dairy products. Goat milk produces softer curds, higher 
amounts of small globular fat, and lower allergen properties. 
Regarding nutrition, cow’s milk and goat’s milk contain 
various nutritional components such as protein, calcium, 
niacin, pantothenic acid, phosphorus, potassium, riboflavin, 
thiamin, and vitamin A, which are sufficient for the human 
diet, even in different concentrations. In addition, both cow’s 
milk and goat’s milk are not a good source of iron, vitamin 
C and D, unless fortified. However, unlike cow’s milk, goat’s 
milk contains insufficient levels of vitamin B6, B12, and folate 
which are not suitable for the growth and development of 
infants and children. In fact, in 1970, megaloblastic anemia 
was reported in children exclusively consuming goat’s milk, 
caused by a lack of folic acid and vitamin B12,62 therefore, 
folate fortification was widely applied to goat milk products.63 
Cow’s milk contains a small amount of folate ranging from 
20-60 µg L-1,58 while goat’s milk contains smaller, which is 
2-11 µg L-1.64 The folate content will be reduced or lost due to 
the UHT sterilization or heating process.25,36 In contrast, both 
types of milk are reported to contain folate-binding proteins 
which can increase the stability of folate during storage. 
Therefore, milk is considered as the most suitable and ideal 
food medium for folate fortification.22,51,65 

Milk and dairy products provide 10-15% of daily folate 
intake. Some fermented milk products contain a greater 
amount of folate as a result of its synthesis by LAB during the 
fermentation process.6 However, in some other fermented 
milk products, LAB could not synthesize folate hence 
their presence can actually reduce folate levels because 
they consume available folate for their growth. The ability 
of LAB to synthesize folate is strain-dependent.12,18,24,42 In 
addition, fermentation conditions such as temperature 
and incubation time could also affect the production of 
folate by LAB.20 Moreover, S. thermophilus is reported to 

produce maximum folate level at 40-42°C after 6 hours of 
fermentation,19,51 while the highest folate level synthesized 
by Lactobacillus helveticus was achieved at 37°C for 18 hours 
of fermentation.51 Lactobacillus plantarum, Lactobacillus 
delbrueckii, Bifidobacterium adolescentis, and Bifidobacterium 
catenulatum produced folate at the highest amount at 37°C 
for 10 hours fermentation.35 The maximum folate levels 
synthesized by different LAB in fermented milk products at 
various temperatures and incubation times are presented in 
Table 3.

Conclusions
Increasing folate concentration in fermented milk products 
using folate producing LAB can be an alternative in 
producing natural folate-rich products as an effort to prevent 
folate deficiency without prompting the side effects. Milk 
is considered as the best medium for folate production 
because of its complex nutritional content and the presence 
of folate binding proteins that can increase the stability of 
folate. Increasing folate content in fermented milk depends 
on the LAB used as a starter culture to produce extracellular 
folate which secreted to the media. The ability to synthesize 
folate is a special characteristic of the strains of LAB, hence 
the selection of folate-producing strains is critical to obtain 
LAB that are able to synthesize folate. Folate production by 
LAB is affected by temperature, incubation time, medium 
composition and the availability of folate precursors such as 
PABA and glutamate. Therefore, the technological approach 
to improve the nutritional value of fermented milk has to 
include optimizing conditions along with a substrate for 
fermentation. 
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Table 3. The Maximum Level of Folate Synthesized by Certain LAB in Fermented Milk Products at Various Temperatures and Incubation Times

Substrate Bacterial Species Incubation Temperature (°C) Incubation Time (h) Maximum Folate Level (ng mL-1) Literature

Reconstituted non-fat 
dry milk

S. thermophilus

37 6

46.7-59.6

25
Lactobacillus acidophilus 53.9-63.9

Bifidobacterium longum 75.8-99.2

Lactobacillus bulgaricus 62.8-68.5

UHT milk with 1.5% fat S. thermophilus 37 12 36.9 33

Skim milk (5%)
Lactobacillus lactis ssp. cremoris

37 7
12.5

34

Lactobacillus lactis ssp. lactis 14.2

Reconstituted non-fat-dry 
milk (12%)

Lactobacillus plantarum

37 10

25.3

35
Lactobacillus delbrueckii 110.1

Bifidobacterium adolescentis 8.3

Bifidobacterium catenulatum 19.4

Reconstituted non-fat 
milk (10%)

S. thermophilus 40 6 47
51

Lactobacillus helveticus 37 18 42

Skim milk S. thermophilus 42 6 20-80 19
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