Repair of Spinal Cord Injury; Mesenchymal Stem Cells as an Alternative for Schwann Cells

Document Type: Review Article

Authors

1 Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran

2 National Cell Bank, Pasteur Institute of Iran, Tehran, Iran

Abstract

Spinal cord injury (SCI) is one of the most severe types of disabilities that has a limited capacity to repair; therefore, medical interventions are essential to the treatment of injuries. Cell transplantation is one of the remarkable strategies for the treatment of spinal cord injury. Transplantation of Schwann cells (SCs) has shown a great promising result for SCI but harvesting SC is limited due to donor complications and limited cell collection capacity. However, the use of stem cells to differentiate into SCs can reduce the risks associated with the use of mature cells in the grafting process. Mesenchymal stem cells can differentiate to various type cells. They are as easily accessed source with high growth rate and low immunogenicity; therefore, these properties make them an interesting source for cell therapy. These cells can be transdifferentiated into SC-like cells in neuronal induction media. Accordingly, many studies demonstrated that mesenchymal cells are well suited for cell therapy of SCI. This article briefly discusses the treatment of SCI by cell transplantation and the benefits of using Mesenchymal stem cells as an alternative for SCs.

Keywords


  1. Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018. doi:10.1038/nrdp.2017.18.
  2. Hayta E, Elden H. Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat. 2018;87:25-31. doi:10.1016/j.jchemneu.2017.08.001.
  3. Kang Y, Ding H, Zhou H, Wei ZJ, Liu L, Pan DY, et al. Epidemiology of worldwide spinal cord injury: a literature review. Journal of Neurorestoratology. 2018;6(1):1-9. doi:10.2147/JN.S143236.
  4. The National SCI Statistical Center. Facts and Figures at a Glance. Birmingham, AL: University of Alabama at Birmingham; 2015:1-2.
  5. Hagen EM. Acute complications of spinal cord injuries. World J Orthop. 2015;6(1):17-23. doi:10.5312/wjo.v6.i1.17.
  6. Sezer N, Akkus S, Ugurlu FG. Chronic complications of spinal cord injury. World J Orthop. 2015;6(1):24-33. doi:10.5312/wjo. v6.i1.24.
  7. Dorward N. Spinal Cord Medicine: Principles and Practice. London, England: SAGE Publications; 2003.
  8. Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain. 2014;137(Pt 3):654-667. doi:10.1093/brain/ awt262.
  9. Murray KC, Nakae A, Stephens MJ, et al. Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat Med. 2010;16(6):694-700. doi:10.1038/nm.2160.
  10. Sahni V, Kessler JA. Stem cell therapies for spinal cord injury. Nat Rev Neurol. 2010;6(7):363-372. doi:10.1038/nrneurol.2010.73.
  11. Vismara I, Papa S, Rossi F, Forloni G, Veglianese P. Current options for cell therapy in spinal cord injury. Trends Mol Med. 2017;23(9):831-849. doi:10.1016/j.molmed.2017.07.005.
  12. Ross HH, Ambrosio F, Trumbower RD, Reier PJ, Behrman AL, Wolf SL. Neural stem cell therapy and rehabilitation in the central nervous system: emerging partnerships. Phys Ther. 2016;96(5):734- 742. doi:10.2522/ptj.20150063.
  13. Jones LL, Oudega M, Bunge MB, Tuszynski MH. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol. 2001;533(Pt 1):83-89.
  14. Lacroix S, Tuszynski MH. Neurotrophic factors and gene therapy in spinal cord injury. Neurorehabil Neural Repair. 2000;14(4):265- 275. doi:10.1177/154596830001400403.
  15. Nadig RR. Stem cell therapy - Hype or hope? A review. J Conserv Dent. 2009;12(4):131-138. doi:10.4103/0972-0707.58329.
  16. Chagastelles PC, Nardi NB. Biology of stem cells: an overview. Kidney Int Suppl (2011). 2011;1(3):63-67. doi:10.1038/ kisup.2011.15.
  17. Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci. 2006;7(8):628-643. doi:10.1038/ nrn1955.
  18. Jiang L, Jones S, Jia X. Stem cell transplantation for peripheral nerve regeneration: current options and opportunities. Int J Mol Sci. 2017;18(1). doi:10.3390/ijms18010094.
  19. Brustle O, Jones KN, Learish RD, et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science. 1999;285(5428):754-756.
  20. Ramon-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron. 2000;25(2):425-435.
  21. Deshpande DM, Kim YS, Martinez T, et al. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol. 2006;60(1):32-44. doi:10.1002/ana.20901.
  22. Cloutier F, Siegenthaler MM, Nistor G, Keirstead HS. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm. Regen Med. 2006;1(4):469-479. doi:10.2217/17460751.1.4.469.
  23. Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25(19):4694-4705. doi:10.1523/jneurosci.0311-05.2005.
  24. Cooney DS, Wimmers EG, Ibrahim Z, et al. Mesenchymal stem cells enhance nerve regeneration in a rat sciatic nerve repair and hindlimb transplant model. Sci Rep. 2016;6:31306. doi:10.1038/ srep31306.
  25. Lee DC, Chen JH, Hsu TY, et al. Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation. Mol Cell Neurosci. 2017;79:1-11. doi:10.1016/j. mcn.2016.11.007.
  26. Lavasani M, Thompson SD, Pollett JB, et al. Human muscle-derived stem/progenitor cells promote functional murine peripheral nerve regeneration. J Clin Invest. 2014;124(4):1745-1756. doi:10.1172/ jci44071.
  27. Zhang SX, Huang F, Gates M, Holmberg EG. Role of endogenous Schwann cells in tissue repair after spinal cord injury. Neural Regen Res. 2013;8(2):177-185. doi:10.3969/j.issn.1673- 5374.2013.02.011.
  28. Kanno H, Pearse DD, Ozawa H, Itoi E, Bunge MB. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus. Rev Neurosci. 2015;26(2):121-128. doi:10.1515/revneuro-2014-0068.
  29. Oudega M, Xu XM. Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma. 2006;23(3-4):453-467. doi:10.1089/neu.2006.23.453.
  30. Kalra K, Tomar PC. Stem cell: basics, classification and applications. American Journal of Phytomedicine and Clinical Therapeutics. 2014;2(7):919-30.
  31. Can A. A concise review on the classification and nomenclature of stem cells. Turk J Haematol. 2008;25(2):57-59.
  32. Ulrich H. Stem cell reviews and reports: induced pluripotent stem cells, embryonic stem cells and development section. Stem Cell Rev. 2017;13(1):3. doi:10.1007/s12015-017-9722-8.
  33. Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10(6):678-684. doi:10.1016/j. stem.2012.05.005.
  1. Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370. doi:10.7717/peerj.4370.
  2. Yorukoglu AC, Kiter AE, Akkaya S, Satiroglu-Tufan NL, Tufan AC. A concise review on the use of mesenchymal stem cells in cell sheet-based tissue engineering with special emphasis on bone tissue regeneration. Stem Cells Int. 2017;2017:2374161. doi:10.1155/2017/2374161.
  3. Mundra V, Gerling IC, Mahato RI. Mesenchymal stem cell-based therapy. Mol Pharm. 2013;10(1):77-89. doi:10.1021/mp3005148.
  4. Zaminy A, Shokrgozar MA, Sadeghi Y, Norouzian M, Heidari MH, Piryaei A. Transplantation of Schwann cells differentiated from adipose stem cells improves functional recovery in rat spinal cord injury. Arch Iran Med. 2013;16(9):533-541. doi:013169/aim.0011.
  5. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364-370. doi:10.1002/1097- 4547(20000815)61:43.0.co;2-c.
  6. Shende P, Subedi M. Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomed Pharmacother. 2017;91:693-706. doi:10.1016/j.biopha.2017.04.126.
  7. Hasan A, Deeb G, Rahal R, et al. mesenchymal stem cells in the treatment of traumatic brain injury. Front Neurol. 2017;8:28. doi:10.3389/fneur.2017.00028.
  8. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5(6):933-946. doi:10.2217/rme.10.72.
  9. Qu J, Zhang H. Roles of mesenchymal stem cells in spinal cord injury. Stem Cells Int. 2017;2017:5251313. doi:10.1155/2017/5251313.
  10. Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J Stem Cells. 2014;6(2):120-133. doi:10.4252/wjsc.v6.i2.120.
  11. Dostert G, Mesure B, Menu P, Velot E. How Do Mesenchymal stem cells influence or are influenced by microenvironment through extracellular vesicles communication? Front Cell Dev Biol. 2017;5:6. doi:10.3389/fcell.2017.00006.
  12. Jeong SR, Kwon MJ, Lee HG, et al. Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol. 2012;233(1):312-322. doi:10.1016/j.expneurol.2011.10.021.
  13. Kitamura K, Fujiyoshi K, Yamane J, et al. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PLoS One. 2011;6(11):e27706. doi:10.1371/journal. pone.0027706.
  14. Urdzikova LM, Ruzicka J, LaBagnara M, et al. Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat. Int J Mol Sci. 2014;15(7):11275-11293. doi:10.3390/ ijms150711275.
  15. Li L, Yang M, Wang C, et al. Effects of cytokines and chemokines on migration of mesenchymal stem cells following spinal cord injury. Neural Regen Res. 2012;7(14):1106-1112. doi:10.3969/j. issn.1673-5374.2012.14.010.
  16. Ribeiro TB, Duarte AS, Longhini AL, et al. Neuroprotection and immunomodulation by xenografted human mesenchymal stem cells following spinal cord ventral root avulsion. Sci Rep. 2015;5:16167. doi:10.1038/srep16167.
  17. Yin F, Guo L, Meng CY, et al. Transplantation of mesenchymal stem cells exerts anti-apoptotic effects in adult rats after spinal cord ischemia-reperfusion injury. Brain Res. 2014;1561:1-10. doi:10.1016/j.brainres.2014.02.047.
  18. Isele NB, Lee HS, Landshamer S, et al. Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons. Neurochem Int. 2007;50(1):243-250. doi:10.1016/j.neuint.2006.08.007.
  19. Lee KH, Suh-Kim H, Choi JS, et al. Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats. Acta Neurobiol Exp (Wars). 2007;67(1):13-22.
  20. Ramalho BDS, Almeida FM, Sales CM, de Lima S, Martinez AMB. Injection of bone marrow mesenchymal stem cells by intravenous or intraperitoneal routes is a viable alternative to spinal cord injury treatment in mice. Neural Regen Res. 2018;13(6):1046-1053. doi:10.4103/1673-5374.233448.