Optimization of Catalase Production by Kocuria sp. ASB107 Using Response Surface Methodology and Molasses as the Carbon Source

Document Type: Original Article

Authors

Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

Abstract

Catalase is an antioxidant enzyme that has various applications in different industries, such as food, dairy, textile, etc. Alkaline catalase is suitable in this regard. Kocuria sp. ASB107 is a radio-resistant bacterium that has been isolated from Ab-e-siahspring in Ramsar (Mazandaran Province, Iran). This bacterium is able to produce relative high amounts of alkaline catalase and hence this catalase has the potential for industrial applications. Production of enzyme in a short time and with low expenses is of a great importance.  Lag phase of Kocuria sp. ASB107 growth takes a long time in TSB medium (about 13 hours).  In order to achieve the highest rate of bacterial growth, 5% inoculum size of cells was used in the middle logarithmic phase and as a result, bacterial lag phase decreased to 2 hours. On the other hand, for economic production of catalase, sugar beet molasses was used as a cheap carbon source. Several factors effecting bacterial growth and enzyme activity were selected for the optimization of catalase production by Kocuria sp. ASB107 using Response Surface Methodology (RSM) based on the Central Composite Design (CCD).  Four variables (carbon source, nitrogen source, agitation, and inoculum size) were selected for the optimization studies. Results showed that Kocuria sp. ASB107 exhibits optimum rate of catalase activity (3399.08 U/ml) and bacterial biomass (6.904 g/L) with carbon source 3% v/v, nitrogen source 0.5% w/v, inoculum size 7.5% v/v, and agitation 200 rpm.

Keywords


  1. Zeng,  H.W.,  Cai,  Y.J.,  Liao,  X.R.,  Qian,  S.L.,  Zhang,  F.,  Zhang,  DB.,  Optimization  of  catalase  production  and  purification  and characterization  of  a  novel  cold-adapted  Cat-2  from  mesophilic bacterium  Serratia marcescens SYBC-01,  Anal  Microbiol,  2010,  Vol. 60,  pp. 701–708.
  2. Kimoto,  H.,  Yoshimune,  K.,  Matsuyma,  H.,  Yumoto,  I.,  Characterization  of  catalase  from  psychrotolerant  Psychrobacter piscatorii T-3  exhibiting  high  catalase  activity,  Int  J  Mol  Sci,  2012, Vol.  13, pp. 1733-1746.
  3. Zamocky, M., Furtmüller, P.G., Obinger, C., Evolution of catalases from bacteria to humans. Antioxid Redox Signal, 2008, Vol. 10, pp. 1527–1548.
  4. Borges, PT., Frazao, C., Miranda, C.S., Carrondo, MA., Rom~ao, CV., Structure of the monofunctional heme catalase DR1998 from Deinococcus radiodurans. FEBS J, 2014, Vol. 281, pp. 4138–4150.
  5. Rochat, T., Miyoshi, A., Gratadoux, J., Duwat, P., Sourice, S., Azevedo, V., Langella, P., High-level resistance to oxidative stress in Lactococcus lactis conferred by Bacillus subtilis catalase KatE. Microbiol, 2005, Vol. 151, pp. 3011-3018.
  6. Amorim,  AM.,  Gasques,  DG.,  Andreaus,  J.,  Scharf,  M.,  The application  of  catalase  for  the  elimination  of  hydrogen  peroxide residues  after  bleaching  of  cotton  fabrics. An  Acad  Bras  Cienc,  2002,  Vol. 74,  pp. 433-436.
  7. Calandrelli,  V.,  Gambacorta,  A.,  Romano,  I.,  Carratore,  V.,  Lama,  L.,  A  novel  thermo-alkali  stable  catalase–peroxidase  from Oceanobacillus oncorhynchi subsp.  incaldaniensis:  purification  and characterization. Microbiol  Biotechnol,  2008,  Vol.   24, pp.  2269–2275.
  8. Hua,  Z.,  Yan,  G.,  Du,  G.,  Chen,  J.,  Study  and  improvement  of  the conditions  for  production  of  a  novel  alkali  stable  catalase. Biotechnol  J,  2006,  Vol.  2, pp.  326-333.
  9. Asgarani, E., Soudi, M.R., Borzooee, F., Dabbagh, R.,  Radio-resistance in psychrotrophic Kocuria sp. ASB 107 isolated from Ab-e-Siah radioactive spring. J Environ Radioact,  2012,  Vol. 113, pp. 171-176.
  10. Shida,  T.,  Mitsugi,  K.,  Komagata,  K.,  reduction  of  lag  time  in bacterial  growth,  effect  of  inoculum  size  and  growth  phases  of  seed culture. J  Gen  Appl  Microbiol,  1977,  Vol.   23,  pp. 187-200.
  11. Augustin, J.C., Brouillaud-Delattre, A., Rosso, L., Carlier, V.,  Significance of inoculum size in the lag time of Listeria monocytogenes. Appl Environ Microbiol, 2000, Vol. 66, pp. 1706-1710.
  12. Aruldoss,  V.,  Kalaichelvan,  P.T.,  Production  of  catalase  by  solid state  fermentation  using  different  agro  and  fruit  peel  wastes  as substrates. J  Mod  Biotechnol,  2014,  Vol.   3, pp.  8-13.
  13. Trupkin,  S.,  Levin,  L.,  Forchiassin,  F.,  Viale,  A.,  Optimization  of  a culture  medium  for  ligninolytic  enzyme  production  and  synthetic  dye decolorization  using  response  surface  methodology. J  Ind  Microbiol Biotechnol,  2003,  Vol.  30, pp. 682-690.
  14. Peng,  Y.,  He,  Y.,  Wu,  Z.,  Lu,  J.,  Li,  C.,  Screening  and optimization  of  low-cost  medium  for  Pseudomonas putida Rs-198 culture  using  RSM. Braz  J  Microbiol,  2014,  Vol. 45,  pp. 1229-1237.
  15. Oberoi,  H.S.,  Rawat,  R.,  Chadha,  B.S.,  Response  surface  optimization for  enhanced  production  of  cellulases  with  improved  functional characteristics  by  newly  isolated  Aspergillus niger HN-2. Antonie  van  Leeuwenhoek,  2013,  Vol. 105,  pp. 119-134.
  16. Khodadoust,  S.,  Hadjmohammadi,  M.,  Determination  of  N-methylcarbamate  insecticides  in  water  samples  using  dispersive  liquid-liquid  microextraction  and  HPLC  with  the  aid  of  experimental design  and  desirability  function.Anal  Chim  Acta,  2011, Vol.  699, pp. 113-119.
  17. Beer, R.F., Sizer, I.W., A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Biol Chem, 1951,  Vol. 195,  pp. 133-140.
  18. Soung,  N.K.,  Lee,  Y.N.,  Iso-catalase  profiles  of  Deinococcus spp. J Biochem  Mol  Biol,  2000,  Vol. 33,  pp.  412- 416.
  19. Lankford, C.E., Walker, R.J., Reeves, J.B., Nabbut, N.H., Byers, B.R., Jones, R.J., Inoculum-dependent division lag of Bacillus cultures and its relation to an endogenous factor(s). J Bacteriol,  1966,  Vol. 91, pp. 1070–1079.
  20. Stephens,  P.I.,  Joynson,  J.A.,  Davies,  K.W.,  Holbrook,  R.,  Lappin- Scott, H.M.,  Humphrey,  T.J.,  The  use  of  an  automated  growth analyzer  to  measure  recovery  times  of  single  heat-injured  Salmonella cells. J  Appl  Microbiol,  1997,  Vol. 83,  pp. 445-455.
  21. Dehghan Shasaltaneh, M., Moosavi-Nejad, Z., Gharavi, S., Fooladi, J., Cane molasses as a source of precursors in the bioproduction of tryptophan by Bacillus subtilis. Iran J Microbiol, 2013, Vol. 5, pp.285-292.
  22. Sarlin, P.J., Philip, R., A molasses based fermentation medium for marine yeast biomass production. Int J Res Marine Sci, 2013, Vol. 2, pp. 39-44.
  23. Aguirre,  S.,  González,  A.,  Özçelik,  N., Modeling  the  Listeria innocua  micropopulation  lag  phase  and  its  variability,  Int  J  Food Microbiol, 2013, Vol.  164, pp. 60-69.
  24. Michailides, M.K., Tekerlekopoulou, A.G., Akratos, C.S., Coles, S., Pavlou, S., Vayenas, D.V., Molasses as an efficient low-cost carbon source for biological Cr(VI) removal. J Hazard Mater,  2015,  Vol. 281, pp. 95–105.
  25. Xiao, ZJ., Liu, P.H., Qin, J.Y., Xu, P., Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol,  2006,  Vol. 74, pp. 61-68.
  26. Shikha, S., Sharan, A., Darmwal, N.S., Improved production of alkaline protease from a mutant of alkalophilic Bacillus pantotheneticus using molasses as a substrate. Bioresour Technol, 2007, Vol. 98, pp. 881–885.
  27. Asgarani, E., Godini, E., Fooladi, J., optimization of growth and catalase production in Kocuria sp. ASB107 in economic medium. Appl Biol J, 2017. Vol. 30 (in persian).