Microarray Data Analysis for Detection and Classification of Viral Infection

Document Type: Original Article

Authors

1 Faculty of Mathematics, Sharif University of Technology, Tehran, Iran

2 Research Center of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

DNA microarrays consist of collection of DNA microscopic spots that In order to form an array attached to a solid surface such as glass, plastic or silicon chip. The pieces of fixed DNA considered as a searcher. In this technology it is possible to test sample against thousands probes for specific genes. With this ability, arrays accelerate the biological investigations, gene finding, molecular detection and disease diagnosis. Microarray technology can be seen as a continued development of southern blotting. The most important stage in this technology is data analysis. To analysis such large data whit high degree of confidence and reliability needs reliable bioinformatics tools. Infectious diseases still is major problem for human. One of the most important application of microarray technology is the possibility of testing for the presence of thousands micro-organism in environmental and clinical samples only in a single excrement. Thereby we take an important step in rapid and accurate detection of infectious diseases. Here, we present E-Predict algorithm and DetectiV package that is based on species identification in microarray. We demonstrate the application of E-Predict and DetectiV for viral detection in a large publicly available dataset and show that DetectiV performs better than E-Predict. DetectiV is implemented as a package for R - powerful, open source software for statistical programming - that containing visualization, normalization and significance testing functions.

Keywords


  1. Brown T.A.,  Gene cloning and DNA analysis: an introduction: Blackwell Pub, 2006.
  2. Wentian L. YY., Introduction to microarray analysis. biomed central proceedings, 2007.
  3. Boonham, N., Walsh, K., Smith, P., Madagan, K., Graham, I., Barker, I., Detection of potato viruses using microarray technology: towards a generic method for plant viral disease diagnosis. J Virol Meth, 2003, vol.108, pp.181-187.
  4. Lapa, S., Mikheev, M., Shchelkunov, S., Mikhailovich, V., Sobolev, A., Blinov, V., et al., Species-level identification of orthopoxviruses with an oligonucleotide microchip. J Clin Microbiol, 2002, vol.40, pp.753-757.
  5. Perrin A., Duracher, D., Perret, M., Cleuziat, P., Mandrand, B.A., combined oligonucleotide and protein microarray for the codetection of nucleic acids and antibodies associated with human immunodeficiency virus, hepatitis B virus, and hepatitis C virus infections. Anal Biochem, 2003, vol.322, pp.148-155.
  6. Riesenfeld, C.S., Schloss, P.D., Handelsman, J., Metagenomics: genomic analysis of microbial communities. Annu Rev Genet, 2004, vol.38, pp. 525-552.
  7. Song, Y., Dai, E., Wang, J., Liu, H., Zhai, J., Chen, C., et al. Genotyping of hepatitis B virus (HBV) by oligonucleotides microarray. Mol Cell probes, 2006, vol.20, pp.121-127.
  8. Mezzasoma, L., Bacarese-Hamilton, T., Di Cristina, M., Rossi, R., Bistoni, F., Crisanti, A., Antigen microarrays for serodiagnosis of infectious diseases. Clin Chem, 2002, vol.48, pp.121.
  9. Zourob, M., Elwary, S., Turner, A., Turner, A., Zourob, M., Elwary, S., Principles of bacterial detection: biosensors, recognition receptors, and microsystems, Springer, 2008.
  10. Wang, D., Coscoy, L., Zylberberg, M., Avila, P.C., Boushey, H.A., Ganem, D., et al. Microarray-Based Detection and Genotyping of Viral Pathogens. Proc Natl Acad Sci U S A, 2002, vol.99, pp.187-192.
  11. Sergeev, N., Distler, M., Courtney, S., Al-Khaldi, S.F., Volokhov, D., Chizhikov, V., et al., Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron, 2004, vol.20, pp.684-698.
  12. Lemarchand, K., Masson, L., Brousseau, R., Molecular biology and DNA microarray technology for microbial quality monitoring of water. Crit Rev Microbiol, 2004, vol.30, pp.145.
  13. Urisman, A., Fischer, K.F., Chiu, C.Y., Kistler, A.L., Beck, S., Wang, D., et al., E-Predict: a computational strategy for species identification based on observed DNA microarray hybridization patterns. Genome Biol, 2005, vol.6, pp.R78.
  14. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool. J Mol Biol, 1990, vol.215, pp.403-410.
  15. The R Project for Statistical Computing Available from: http://www.R-project.org.
  16. Michael, W., Juliet, D., Abu-Bakr, A.M., Donald, P.K., Paul, B., Detecti, V., visualization, normalization and significance testing for pathogen-detection microarray data. Genome Biol, 2007, vol.8, pp.R190.
  17. Smyth, G.K., limma: Linear Models for Microarray Data. In: Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S, editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Statistics for Biology and Health, Springer, New York, 2005, p. 397-420.
  18. Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A., affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004, vol.20, pp.307.
  19. Barrett, T., Edgar, R., Gene Expression Omnibus: Microarray Data Storage, Submission, Retrieval, and Analysis. In: Alan K, Brian O, editors. Meth Enzymol, 2006, Vol.411, pp. 352-69.