
Introduction
Spinal cord injury (SCI) is one of the most severe types of 
disabilities, which due to its negative impacts on motor 
control abilities, has a major impact on patient’s life and 
causes the person to face a wide range of constraints.1,2 The 
statistics show that the incidence rates of developed countries 
ranged from 13 to 163 per million people while the rates of 
non-developed countries varied from 13 to 220 per million 
people. In addition, the prevalence of SCI is 490 to 526 per 
million population among developed countries and for non-
developed countries, reported prevalence is about 440.3 On 
the other hand, the cost of caring for a SCI is also huge. For 
example, the annual cost of spinal cord injuries is estimated to 
be more than $9 billion in America and a tetraplegia patient 
will cost over 900 000 in the first year and $ 170 000 over the 
next years.4 In Iran, there are more than 2000 SCI veterans 
due to Iraq-Iran war and more than 15 000 cases of spinal 
cord injuries have been diagnosed until today. According to 
the studies, the most common causes of spinal cord injuries 
include injuries during driving and sports, violent acts 
and war injuries, falling from heights, some diseases, and 
medical incidents. Complications due to spinal cord injuries 
include loss of complete or partial movement ability (such 

as walking) and sensation in the affected area and the more 
upper body is engaged, the more will be the complications.5,6 
However, injured spinal cord axons have the ability to restore 
themselves, but the maximum axon growth is about one 
millimeter, although this restoration process is not happening 
at a satisfactory level. On the other hand, the glial scars 
formation and the lack of growth stimulating symptoms such 
as semaphorin and ephrin and on the contrary the existence 
of inhibition signals like myelin sheath components (myelin-
associated glycoprotein, Nogo-A) are regarded as inhibitory 
factors of axon growth.7 Therefore, considering the extent 
and intensity of the disabilities caused by spinal cord injuries 
and their increased incidence, numerous efforts have been 
made in order to elevate the effects of mentioned damages. 
The effective treatment of the injury depends on the type and 
severity of the damage, although the high costs of treatment 
can affect the process of healing.8,9 The use of cell therapy 
is one of the solutions that have been widely considered in 
the last 2 decades due to the high growth rate of regenerative 
medicine based on tissue engineering and stem cell.10,11
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for treatment of SCI which includes embryonic tissue 
transplantation, use of Schwann mature cells, and embryonic, 
bone marrow, nervous stem cells, and olfactory ensheathing 
cells (OECs).11,12 In some cases gene therapy and insertion of 
genes such as NT-3, BDNF, NGF, which play an important 
role in restoring spinal cord injuries, into stem cells or 
mature cells such as fibroblasts is also used.13,14 Considering 
the progress in stem cells and restorative medicine, stem cell 
therapy compared to the use of mature cells is one of the most 
important and remarkable therapies for SCI or other injuries 
and diseases because of long-term self-renewal ability of stem 
cell and the possibility of genetic manipulation.15,16 However, 
access to an appropriate stem cell source is one of the most 
limitations and their differentiation into target cells is one of 
the key steps in using these cells for treatment purposes.

In general, the applied cell therapy techniques in order to 
repair SCI can be summarized in the following cases17,18:
•	 Transplantation of peripheral nerve
•	 Transplantation of Schwann cells (SCs)
•	 Transplantation of olfactory nervous system cells
•	 Transplantation of embryonic CNS tissue
•	 Transplantation of embryonic stem/progenitor cells
•	 Transplantation of adult stem/progenitor cells
•	 Transplantation of engineered stem/progenitor cells
•	 Transplantation of activated macrophages

In 1999, for the first time, German researchers by employing 
embryonic stem cells (ESCs) derived from glial precursors 
showed that a protective myelin sheath could be formed in 
the rat-damaged spinal cord.19 In addition, other studies 
showed that these cells could improve the rat’s SCI at a very 
limited level. In 2000, for the first time, olfactory stem cells 
were used for repairing SCI in rats.20 Since then, many studies 
have reported the use of stem cells and tissue engineering to 
repair these injuries with different levels of recovery.21-26 Here 
is a variety of studies due to the complexity of the spinal cord 
tissue and the lack of complete recognition of the effective 
repair process at the clinical level. However, the use of SCs 
is one of the options that has been considered in recent years 
for the treatment and repair of spinal cord injuries due to the 
considerable potential of these cells including27-29:
•	 Produce growth factors, which stimulate some nerve 

fiber (axon) regeneration
•	 Produce components of the extracellular matrix, which 

supports regenerating axons
•	 Surround and re-insulate (re-myelinate) axons that lost 

their insulation after injury
•	 Restore axonal communication upon re-myelination
•	 Spontaneously enter the spinal cord after SCI

Although, there are limitations for transplanted SCs such 
as (1) need to provide a neurotransmitter for extraction and 
transplantation of SCs, (2) the possibility of secondary damage 
during the isolation and receipt of primary SCs, (3) possibility 
of immunogenic responses, and (4) the need for long-term 
cell cultivation and proliferation processes. Accordingly, the 
use of stem cells to differentiate into SCs can reduce the risks 
associated with the use of mature cells in the grafting process.

Stem cells can be characterized based on their differentiation 
potential including totipotent, pluripotent, unipotent, and 

adult stem cells. Totipotent stem cells can form an entire 
embryo including the extraembryonic tissues. Pluripotent 
stem cells can trigger the three embryonic germ layers:  
mesoderm, endoderm, and ectoderm. Unipotent or progenitor 
stem cells can only differentiate into one defined cell type and 
adult stem cells are capable of multi-lineage differentiation in 
cells of only one germ layer.30,31 The differentiation potential 
of stem cells is related to their developmental stage so that 
the potential of differentiation decreases from an ESC to a 
specialized tissue stem cell. In addition, induced pluripotent 
stem cells (iPSC) as a type of pluripotent stem cell can be 
generated directly from adult cells.32-34

So far, many studies have been done on the use of stem cells 
to repair spinal cord injuries by differentiating stem cells into 
SC. In these studies, various types of stem cells have been 
evaluated based on development stage including tissue source 
and iPSC. Table 1 presents different sources of stem cells that 
have been evaluated for SCI.18 

Mesenchymal Stem Cells as an Alternative for Schwann cell 
Transplantation
Bone marrow and adipose-derived stem cells (ADSCs) as 
mesenchymal stem cells (MSCs), which also derived from 
peripheral blood, placenta and umbilical cord, the lung, and 
the heart, are multipotent stromal cells that can differentiate 
to various type cells such as osteoblasts, chondrocytes, 
and adipocytes. They are as easily accessed source with 
high growth rate, low immunogenicity and a favorable 
ethical profile and better safety that can differentiate to all 
mesodermal lineage cells, therefore these properties make 
them an interesting source for cell therapy.35,36 MSCs can be 
transdifferentiated into SC-like cells in neuronal induction 
media.37,38 On the other hand, studies have shown that SCs 
that differentiated from MSCs enhance and support neurite 
outgrowth, axonal surviving and remyelination.39 In many 
studies, MSCs is considered as a brilliant cell for the treatment 
of central nervous system.40,41 In addition, transplantation of 
SCs derived from mesenchymal stem cells as a potentially 
useful treatment for SCI is also confirmed.42,43 Studies have 
shown that MSCs can produce various growth factors, 
neuroprotective cytokines and chemokines (Figure 1) such 
as vascular endothelial growth factor (VEGF), hepatocyte 
growth factor (HGF), fibroblast growth factor (FGF), nerve 
growth factor (NGF), and brain-derived neurotrophic factor 
(BDNF), which enhances functional benefits associated with 
MSC transplantation.42,44 Accordingly, MSCs are an efficient 
source of HGF suggested that the therapeutic effects of 
MSC transplantation are partly mediated by HGF secretion. 
This factor blocked secretion of transforming growth 
factor-β (TGF-β) from activated astrocyte cells and prevented 
expression of specific chondroitin sulfate proteoglycan 
(CSPG) species. Studies demonstrated that transplantation of 
HGF-overexpressing MSCs significantly decreased expression 
of neurocan and glycosaminoglycan chain deposition around 
hemisection lesions in the spinal cord.42,45,46 Also in animal 
models, HGF-MSCs showed an increase in axonal growth 
and improvement in functional recovery, which confirms that 
HGF can act as an attractive signal for the guidance of axon 
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motor to the target tissue.45 In addition to growth factors, 
immunological cytokines are also involved in the process 
of stem cell therapy after SCI. According to the studies, 
transplantation of MSCs into a lesion spinal cord leads to a 
reduction in Tumor necrosis factor alpha (TNFα), interleukin 
1 beta (IL-1β, IL-2), IL-4, IL-6, and IL-12 secretion.47,48 
In addition, implantation of MSCs inhibits second-phase 
neuronal injury by suppressing lymphocyte and microglia 
effects and reduces the inflammatory reaction in the local 
environment after SCI.49 These results confirm that MSC 
administration can help to neuronal survival after lesion 
through cytokine release and immunomodulation. It has also 
been demonstrated that apoptosis-related pathways involved 
in SCI is affected after MSC transplantation. Accordingly, 
findings show that caspase-3-mediated apoptosis on neuron 
and oligodendrocyte cells following SCI is significantly 
downregulated by MSCs, which is regulated through 
stimulation of endogenous survival signaling pathways 
including  PI3K/Akt, and the MAPK/ERK1/2-cascade.50,51

Considering the contents mentioned above, it can be 
explained that mesenchymal cells are well suited for cell 
therapy of SCI. In this regard, many experiments in small 
and big SCI animal models have demonstrated the beneficial 
effects of MSCs from different sources.52,53 In addition, various 
studies are currently underway at various clinical stages using 

Table 1. Comparison of Different Sources of Stem Cells Used for Peripheral Nerve Regeneration18

Stem Cell Classification Advantage Disadvantage
Preclinical or 
Clinical

Use Mechanism

ESCs
Pluripotent stem 
cells

Homogenous, no detrimental impact of age 
and disease, unlimited cell number, better 
differentiation potential, and longer lasting 
proliferation capacity

Teratoma formation, ethical dilemma Preclinical
Myelination and/or 
neurotrophic factors

BMSCs Multipotent cells Easily accessible without ethical concerns
Lower capacity of proliferation and 
differentiation, invasive procedure for 
autologous harvesting

Preclinical
Myelination, neurotrophic 
factors

ADSCs
Multipotent stem 
cells

Easy to harvest, higher proportion and 
superior proliferation

Differentiation potential towards 
adipocytes

Preclinical
Myelination, neurotrophic 
factors, reduce inflammation

NSCs
Multipotent stem 
cells

Difficult to be harvested Preclinical Replace SCs

Fetal-derived 
stem cell

Multipotent stem 
cells

Less immunoreactivity Cell bank for storage Preclinical
Augmented blood perfusion 
and enhanced intraneural 
vascularity

HFSCs
Multipotent stem 
cells

Abundant and accessible source, 
differentiate into pure human SC 
population

Difficult to isolate Preclinical
Replace SC myelination, 
neurotrophic factors

DPSCs
Multipotent stem 
cells

Stronger harvesting and proliferation 
potential, as well as greater clonogenic 
potential

Require storage Preclinical
Replace SC myelination, 
neurotrophic factors

SKP-SCs Multipotent cells Easy to harvest Long time to differentiate Preclinical Replace SC myelination

MDSPCs Progenitor cells Abundant and accessible source Limited research Preclinical Neurotrophic factors

iPSCs
Pluripotent stem 
cells

Inducible from easily obtainable somatic 
cells

Subdued efficiency and enhanced 
variability during the differentiation 
process, epigenetic memory from the 
original somatic cells, chromosomal 
aberrations, stronger tumorigenicity

Preclinical
Replace SC myelination, 
neurotrophic factors

ESCs: embryonic stem cells; BMSCs: bone marrow-derived stem cells; ADSCs: adipose-derived stem cells; NSCs: neural stem cells; HFSCs: hair follicle stem cells; DPSCs: 
dental pulp stem cells; SKP-SCs: skin-derived precursor stem cells; MDSPCs: muscle-derived stem/progenitor cells; iPSCs: induced pluripotential stem cells; SC: Schwann 
cell.

Figure 1. Different Effects of the Soluble Paracrine Factors Secreted by 
MSCs (https://anova-irm-stemcell-center.com).
MMP: Matrix metalloproteinase; TIMP: Tissue inhibitors of 
metalloproteinases; HGF: Hepatocyte growth factor; FGF: Fibroblast 
growth factor; Ang-1: Angiopoietin 1; KGF: Keratinocyte growth factor; 
VEGF: Vascular endothelial growth factor; IGF: Insulin-like growth factors; 
TGF: Transforming growth factor; GM-CSF: Granulocyte-macrophage 
colony-stimulating factor; TPO: Thrombopoietin; SCF: Stem cell factor; 
LIF: Leukemia inhibitory factor; SDF-1: Stromal cell-derived factor 1; 
BDNF: Brain-derived neurotrophic factor; NGF: Nerve growth factor; 
GDNF: Glial cell line-derived neurotrophic factor; PDGF: Platelet-derived 
growth factor; EPO: Erythropoietin; MCP-1: Monocyte chemoattractant 
protein-1; CCL: Chemokine (C-C motif) ligand; CXCL: Chemokine (C-X-C 
motif) ligand; IDO: Indoleamine 2, 3-dioxygenasase; PGE: Prostaglandin 
E2; TSG-6: TNF-stim ulated gene 6 protein; HO-1: Heme oxygenase-1; 
HLA-G: Human leukocyte antigen G; IL: interleukin.
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MSCs that their results are promising for the treatment of 
spinal cord injuries. Table 2 presents some clinical studies that 
have been performed using MCSs.

Conclusions
The main goals of stem cell-based therapies for SCI are 
the neuron replacement and restoration of neurological, 
structural, and functional of the spinal cord after injury. This 
type of therapy is regarded as promising methods because 
of their effectiveness in the treatment of SCI. However, 
determination of an effective and specific type of stem cell 
(due to the existence of different types of stem cells) for 
cell replacement therapy in patients, which can be used as 
a renewable source, is one of the key steps in this process. 
Moreover, some issues such as their effectiveness, ethical 
considerations and being as a safe option in such therapies is 
still a challenge and must be considered. However with regard 
to the potential of MSCs, it seems that these cells can be a 
significant option for the treatment of spinal cord injury using 
cell therapy.
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