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Introduction  

Plants possess complicated regulatory mechanisms that may 

respond to varying conditions of the environment and overcome 

abiotic stresses, including salinity.1 Wheat is an important 

cereal in the world nutrition scenario and is commonly 

consumed in bread as a good source of carbohydrates, proteins, 

vitamins, minerals, valuable phytochemicals, and other 

dietary components.2,3 It is among the most cultivated cereal 

crops globally4 grown on 22% arable land. The cultivation 

area of wheat covers broad geographical conditions, including 

arid and semi-arid regions where production is primarily 

limited by salinity stress. Salinity affects the overall development 

of plants, including growth, development, and yield. Plants 

survive in different types of environmental conditions 

through a wide range of genetic variations. Plants change 

gene expression patterns and protein accumulation under 

stress conditions.5,6 The impact of salt stress on the metabolism, 

altered gene expression, and protein profiling has been 

reported.7-9 These changes in plants’ expression patterns 

allow them to withstand stress conditions, which leads to 

stress tolerance. Expression profiling can define both sensitive 

and tolerant genotypes. Therefore, the study of expression 

profiling is essential for investigating plant response towards 

stress,7 as differential expressions among cultivars were 

known to provide a different level of tolerance.10 To expand 

the studies of plant stress responses and adaptation 

mechanisms, analysis of stress-induced proteins is critical in 

proteomic studies as it provides insight into the intricate 

mechanism of stress mitigation. At the cellular level, the 

proteins interact to function as “molecular machines” and 

establish dynamic physicochemical connections to regulate 

biological functions. PPI are essential to understand the 

complex molecular relationships during stress11. Alterations 

in the protein profiles and their interactome studies in rice 

during abiotic stresses have been investigated.12 However, very 

few studies have been conducted on PPI networks of wheat 

seedlings under salt stress. These interaction networks may 
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have considerable significance in understanding plant systems’ 

stress responses.13 The interactome- guided prediction can 

identify novel regulators of stress tolerance.14 The combination 

of focused interactome and system analyses can significantly 

progress towards elucidating agronomic importance traits’ 

molecular basis.  

Wheat has several cultivars with diverse salinity tolerance. 

Two contrasting wheat genotypes are used in the present 

investigation, of which KH-65 is salinity tolerant while 

PBW-373 is sensitive. The present study is designed to 

perform in silico analysis of the combinatorial root interactome 

of differentially expressed proteins of KH-65 (salt-tolerant) 

and PBW-373 (salt-susceptible). 

 

Materials and Methods 

Plant Material, Growth Conditions, and Experimental 

Details 

The seeds of contrasting wheat genotypes, Kharchia-65 

(Salt-tolerant) and PBW-373 (Salt-susceptible), were obtained 

from the Indian Institute of Wheat and Barley Research, 

Karnal, India. Wheat seeds were sterilized with 0.1% HgCl2 

for 2 min, then rinsed with double distilled water and 

germinated on autoclaved sand. Upon germination, the 

seedlings were then transferred to a hydroponic culture 

medium for 48 h inside a growth chamber. The half-strength 

modified Hoagland’s solution15 was used for growing the 

plants at 20 °C, for photoperiods of 16:8 hour day-night cycle, 

and intensity of light 2000 lux.15,16 The salinity treatments to 

the seedlings were given at the three-leaf stage. Against the 

control (containing half-strength modified Hoagland solution 

alone), 300 mM of saline concentration (NaCl) was applied 

for 48 h. Proteins extraction was carried out using the phenol 

extraction method reported by Faurobert et al.17 Bradford 

reagent was used for the estimation of total soluble 

proteins.18 Each sample’s absorption was recorded at 595 nm 

on a spectrophotometer (SYSTRONICS, Smart UV VIS 

Double Beam Spectrometer with Graphic LCD-Type 2203). 

The samples were analyzed using a nano-flow liquid 

chromatography (EASY-nLC 1000 system, Thermo-Fisher 

Scientific) pre-optimized for proteins and peptides separation. 

Mass spectral data were recorded by the selection of 

abundant precursor ions in the survey scan. The enzyme 

used for the generation of peptides was trypsin/P with a 

maximum of two missed cleavages. False discovery rate and 

spectrum match for proteins were set at 0.01 FDR. 

 

Data Analysis 

Differential analysis between PBW-373 and KH-65 lines 

was done by deploying the protein abundance values in each 

sample [PBW-373 (Control), PBW-373 (Treated), KH-65 

(Control), and KH-65 (Treated)]. The abundance value of 

proteins was filtered, and missing values were then imputed 

using a normal distribution. The abundance values were 

Log2 transformed, succeeded by Z-score standardization for 

normalization of data. Statistical significance was conferred 

through ANOVA, and FDR<0.05 was considered for 

statistically significant proteins. The differential analysis 

was also performed separately between treatment and 

control for both the lines, KH-65 and PBW-373. Student T-

test was applied to the data. Statistical significance was 

tested against the FDR<0.05; in-house R scripts were used 

for visualization. Gene Ontology terms in the identified 

proteins were annotated from the Uniprot database using 

Accession IDs for the functional annotation of categories. 

Proteins were grouped according to GENE ontology terms 

for biological process and arranged in descending order. 

 

Interactome Analysis Through STRING Database 

The STRING protein-protein interaction networks functional 

enrichment analysis was used to drive the confidence 

analysis of PPI Networks for all differentially expressed 

proteins (DAPs). The top ten biological processes viz. 

translation, Intracellular protein transport, vesicle-mediated 

transport, transcription, biosynthetic process, protein folding, 

carbohydrate metabolism, glycolysis, lipid transport, and 

hydrogen peroxide catabolic process were analyzed in 

KH-65 and PBW-373 roots after a 48 h exposure of salinity 

stress.19 String 11.0 version was used for analysis 

(https://string-db.org/). The PPI with confidence scores 

higher than 0.7 were shown. To enhance the validity of 

different groups of interactions which are significantly 

enriched in the pathways, only experimentally proven active 

interaction sources were considered for the present 

investigation. 

 

Results and Discussion 

The PPIs in the roots of wheat lines, KH-65 and PBW-373 

under salt stress, are presented in Figures 1 and 2. Analysis 

of KH-65 root interactome gives us 108 nodes, 425 edges, 

and five clusters of interacting proteins consisting of 66 

proteins. The interactome of the sensitive line, PBW-373, 

had a comparatively lesser number of nodes, edges and 

interacting clusters of proteins than the tolerant line, KH-65. 

The root interactome of PBW-373 consists of only 75 nodes, 

344 edges, and 43 interacting proteins in five interactions. In 

a biological system, a cascade of reactions co-occurs to 

manifest a biochemical pathway. Each step of a cascade 

involves enzymes. Thus proteins must act as a molecular 

machine.20 The details of the wheat proteins of the top ten 

biological processes that participated in the interactome 

network are presented in Supplementary Tables S1 and S2. 

Details of top upregulated and down regulated proteins of 

both the lines are given in Tables 1-4. This combinatorial 

interactome depicts significant changes in the PPI networks 

in the root of salt stress-induced differentially expressed 

proteins.  
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Figure 1. Combinatorial Root Interactome of Differentially Expressed Proteins (DEP’s) in Tolerant Line KH-65. 

 
 

 
Figure 2. Combinatorial Root Interactome of Differentially Expressed Proteins (DEP’s) in Sensitive Line PBW-373. 
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Table 1. Top 15 Upregulated Proteins and Number If Their Interacting Partners in Root Proteins of KH-65 Interactome 

S. No. KH-65, Root Protein Coding Name 
Biological 

Process 

Common or Unique  

Proteins 
Fold Change 

Interacting 

Partners 

1 Vacuolar protein sorting-

associated protein 41 

homolog 

Traes_2AL_0B9E1F386.1 Vesicle mediated 

transport 

Unique 6.64 4 

2 VHS domain-containing 

protein 

Traes_3AS_026945785.2 Intracellular 

protein transport 

Common protein 6.64 1 

3 Clathrin heavy chain Traes_5AL_C22CF596A.1 Vesicle mediated 

transport 

Unique 6.64 4 

4 Auxin-responsive protein Traes_5BL_EC006AD0C.1 Transcription Unique 6.64 1 

5 WD_REPEATS_REGION 

domain-containing protein 

Traes_6AS_1A54BB177.1 Transcription Unique 6.64 3 

6 CNH domain-containing 

protein 

Traes_4AL_96E6567CA.1 Intra cellular 

protein transport 

Unique 3.45 3 

7 TOPLESS TPL Transcription Common protein 1.73 3 

8 Ribosomal protein L15 Traes_2AS_76163A005.1 Translation Common protein 1.65 24 

9 MHD domain-containing 

protein 

Traes_6BL_470ECDCDF.1 Vesicle mediated 

transport 

Unique protein 1.44 3 

10 Coatomer subunit alpha Traes_5AL_E153CEC65.1 Intracellular 

protein transport 

Common protein 1.26 2 

11 60S ribosomal protein L18a Traes_1AL_6FE68F3A5.2 Translation Common protein 0.86 25 

12 S4 RNA-binding domain-

containing protein 

Traes_2DS_6E564A7CF.1 Translation Common protein 0.85 25 

13 AP-4 complex subunit 

epsilon 

Traes_3B_1DB17F0DF.1 Vesicle mediated 

transport 

Unique 0.82 2 

14 VAMP like putative proteins 

belongs to the 

synaptobrevin family 

Traes_3B_2D7D1DD25.1 Vesicle mediated 

transport 

Common protein 0.73 7 

15 Ribosomal protein L3-A3 RPL3-A3 Translation Common protein 0.61 28 

 
The combinatorial root interactome of KH-65 is a complex 

interactome with the participation of 66 proteins forming 

PPIs. The cluster-I, the smallest cluster involved in the 

interaction of two proteins, namely GrpE protein homolog 

and J domain-containing protein, was involved in protein 

folding. The link of these proteins with enhancing tolerance 

and managing stress via a function in translocation, proper 

folding, and removing stress-damaged proteins has been 

elucidated in many studies.21,22 The cluster-II involved an 

interaction network of three proteins. Two proteins, namely, 

Rab18s and Guanosine nucleotide diphosphate dissociation 

inhibitor, were involved in intracellular protein transport, 

and one protein called Small GTP-binding protein was 

involved in the vesicle-mediated transport. All the three 

proteins in this cluster are found in the down regulated state.  

Similarly, Cluster-III and Cluster-IV consisted of ten proteins. 

Each cluster consisted of intracellular protein transport or 

vesicle-mediated transport. Most of the proteins in these two 

clusters were found upregulated in response to salt stress. 

Among these, the upregulated proteins of cluster-III were 

CNH domain-containing protein (involved in vacuolar protein 

sorting),23 GTPase SAR 1 (involved in protein sorting and 

secretory trafficking),24 and Putative SNAP receptor protein 

(involved in the maintenance of cellular homeostasis, membrane 

fusion, and transport vesicles and salinity resistance)25 vacuolar 

protein sorting-associated protein 41 homologs (involved in 

the regulation of transport and provides salinity tolerance),26 

t-SNARE coiled-coil homology domain-containing protein 

(involved in vesicle fusion, docking and intracellular protein 

transport [W5FLZ1]), and VAMP like putative protein 

(involved in protein transport through vesicles).27  

Whereas, the list of the upregulated proteins of cluster IV 

included coatomer subunit α, β and γ proteins (involved in 

retrograde protein transport),28 Coatomer subunit gamma, 

and VHS domain-containing protein (involved in protein 

sorting and secretory trafficking),24 AP-4 complex subunit 

epsilon (involved in cell vesicle transport),29 Clathrin heavy 

chain (mediates endocytosis),30 and MHD domain-containing 

protein (increased secretion via helping in vesicle priming).31 

The transport proteins have been reported to be salinity 

stress-responsive in the tolerant genotype.22,32 

The largest cluster, Cluster-Vof interacting proteins that 

belong to biological processes, namely, intracellular protein 

transport, hydrogen peroxide catabolic process, transcription, 

and translation, is the dominant one. In this cluster, proteins 

involved in glycolysis, transcription, and translation were 

upregulated. Li et al.8 also reported a more extensive PPI 

network as an indicator of better resistance capacity of 

tolerant line.8  

The upregulated proteins of Cluster-V included Pyruvate 

kinase that is involved in the glycolysis pathway. The auxin-

responsive protein, WD_REPEATS_REGION domain-containing 

protein, and TOPLESS which involved in the regulation of 

transcription. The HATPase_c domain-containing protein is 

involved in protein folding. The Ribosomal_L2_C domain-

containing protein, S4 RNA-binding domain-containing 

protein, Ribosomal proteins L3-A3, L3, L15, 60S ribosomal 

protein L18a, and TFIIB-type domain-containing protein are 

involved in translation. 

The combinatorial root interactome of PBW-373 consists 

of five clusters. The smallest one, Cluster-I, had an interaction 

network of only two down-regulated proteins, GrpE protein  
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Table 2. Top 15 Downregulated Proteins and Number If Their Interacting Partners in Root Proteins of KH-65 Interactome 

S. No. KH-65  Coding Name Biological Process Common/Unique 
Fold 

Change 

Interacting 

Partners 

1 RPOLD domain-containing 

protein 

Traes_4BL_1638411DC.2 Translation Unique protein -4.99 10 

2 30S ribosomal protein S14, 

chloroplastic 

rps14 Translation Common protein -4.3 28 

3 Ribosomal protein L19 Traes_2DS_2697C9D0A.1 Translation Common protein -3.7 23 

4 30S ribosomal protein S2, 

chloroplastic 

EPlTAEP00000010057 Translation Common protein -3.65 27 

5 Thioredoxin M-type, 

chloroplastic 

Traes_5BS_B72CD04F2.1 Hydrogen peroxide 

catabolic process 

Unique protein -3.56 1 

6 Protein transport protein 

Sec61 subunit beta 

Traes_4DS_BCEF8A384.1 Intracellular protein 

transport process 

Common protein -3.27 23 

7 30S ribosomal protein S19, 

chloroplastic 

Traes_3DL_262C70465.1 Translation Common protein -3.17 23 

8 2-Cys peroxiredoxin BAS1, 

chloroplastic 

Traes_2BL_E6F86DAFA.1 Translation Unique protein -2.91 4 

9 50S ribosomal protein L33, 

chloroplastic 

Traes_5DS_FAF0D3449.1 Translation Common protein -2.9 15 

10 Protein VACUOLELESS1 Traes_3AL_A744FA135.1 Intra cellular protein 

transport 

Unique protein -2.86 4 

11 Catalase CAT1 Hydrogen peroxide 

catabolic process 

Common protein -2.74 1 

12 Not3 domain-containing 

protein 

Traes_1AL_C550E0E88.1 Transcription Unique protein -2.24 25 

13 Protein disulfide-isomerase PDI2 Protein folding Common protein -1.7 1 

14 Ribosomal_L28e domain-

containing protein 

Traes_3DL_E7983BF89.1 Translation Common protein -1.68 23 

15 Ribosomal_S10 domain-

containing protein 

Traes_5DS_BFF4B778D.1 Translation Common protein -1.61 26 

 

homolog (involved in managing stress via a function in 

translocation)21 and J domain-containing protein (involved in 

proper folding)33 that are involved in protein folding. 

Similarly, two more clusters, Cluster II and III, were also 

present in the three proteins' interaction networks. Of these, 

one cluster had an upregulated clathrin heavy chain protein 

(mediates endocytosis),30 and two down-regulated proteins, 

clathrin light chain and VHS domain-containing protein that 

play a role in intracellular protein transport. 

Another three protein interaction clusters consist of one 

protein belonging to vesicle-mediated transport (VAMP-like 

protein) and two belonging to intracellular protein transport 

(VACUOLELESS1; t-SNARE coiled-coil homology domain- 

containing protein); all the three proteins were repressed 

down regulated due to salinity stress. Cluster IV had an 

interaction network of four proteins, of which one central 

protein, Coatomer subunit alpha (involved in protein sorting 

and secretory trafficking)24 interacted with the other three 

proteins, AP-1 complex subunit gamma (mediates vacuolar 

targeting),34 Coatomer subunit alpha28 and Coatomer subunit 

beta (involved in protein transport from ER to the cis-trans 

compartment).35 

The cluster-V was the cluster of the most extensive 

interaction network comprising 31 proteins belonging to the 

biosynthetic process, intracellular protein transport, transcription, 

glycolysis, protein folding, and translation. Among these, 

  
Table 3. Top 12 Upregulated Proteins and Number If Their Interacting Partners in Root Proteins of PBW-373 Interactome 

S. No. KH-65 Root Proteins Coding Name Biological Process 
Common or Unique 

Proteins 

Fold 

Change 

Interacting 

Partners 

1 AP-1 complex subunit 

gamma 

Traes_7DS_2D5054AF7.2 Intra cellular protein 

transport 

Unique protein 6.64 1 

2 30S ribosomal protein 

S19, chloroplastic 

Traes_3DL_262C70465.1 Translation Common protein 6.64 23 

3 RPOLD domain-

containing protein 

Traes_4BL_1638411DC.2 Translation Common protein 5.7 9 

4 Ribosomal protein L3 RPL3-B1 Translation Common protein 1.49 27 

5 Coatomer subunit beta Traes_3B_E7D10A09E.2 Intra cellular protein 

transport 

Common protein 1.18 3 

6 Coatomer subunit alpha Traes_5AL_E153CEC65.1 Intra cellular protein 

transport 

Common protein 1.16 1 

7 Ribosomal protein L15 Traes_2AS_76163A005.1 Translation Common protein 1.05 22 

8 TOPLESS TPL transcription Common protein 0.91 2 

9 Coatomer subunit alpha Traes_4DL_852DF544C.1 Vesicle mediated 

transport 

Common protein 0.78 1 

10 Clathrin heavy chain Traes_5AL_C22CF596A.1 Intracellular protein 

transport 

Common protein 0.76 2 

11 Ribosomal protein L3-A3 RPL3-A3 Translation Common protein 0.74 26 

12 SYP71 protein Traes_5DS_BFF4B778D.1 Translation Unique protein 0.68 26 
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Table 4. Top 15 Downregulated Proteins and Number If Their Interacting Partners in Root Proteins of PBW-373 Interactome 

1 Ribosomal protein L19 Traes_2DS_2697C9D0A.1 Translation Common protein -4.34 23 

2 30S ribosomal protein S14, 

chloroplastic 

rps14 Translation Common protein -4.3 27 

3 RRF domain-containing protein Traes_2AL_D00BA883E.1 Translation Unique protein -4.29 18 

4 HATPase_c domain-containing 

protein 

Traes_5DS_AC5D29D23.1 Protein folding Common protein -3.98 3 

5 VAMP-like protein Traes_3B_2D7D1DD25.1 Vesicle mediated transport Common protein -3.09 2 

6 50S ribosomal protein L33, 

chloroplastic 

Traes_5DS_FAF0D3449.1 Translation Common protein -2.9 17 

7 Ribosomal_L28e domain-

containing protein 

Traes_3DL_E7983BF89.1 Translation Common protein -2.6 22 

8 30S ribosomal protein S2, 

chloroplastic 

EPlTAEP00000010057 Translation Common protein -2.58 25 

9 Clathrin light chain Traes_7BL_241070F8C.2 Intracellular protein transport Common protein -2.53 1 

10 GrpE protein homolog Traes_5BL_10BF821D1.2 Protein folding Common protein -2.42 1 

11 Putative ribosomal protein S18 Traes_5BL_1A355FBC5.1 Translation Common protein -2.15 27 

12 Ribosomal_S13_N domain-

containing protein 

Traes_7DL_62F01AA40.1 Translation Common protein -2.07 25 

13 J domain-containing protein Traes_1AS_488596E82.1 Protein folding Common protein -1.92 1 

14 Protein transport protein Sec61 

subunit beta 

Traes_4DS_BCEF8A384.1 Intracellular protein transport Common protein -1.91 22 

15 KOW domain-containing protein Traes_3B_FC13C246C1.3 Translation Common protein -1.9 26 

 

Among these, TOPLESS, 30S ribosomal protein S19, 

chloroplastic, SYP71 protein, Ribosomal protein L3-A3, 

RPOLD domain-containing protein, Ribosomal protein L3 

protein, and phosphotransferase belongs to transcription, 

translation, and glycolysis pathways. The majority of proteins 

belong to transcription, intracellular protein transport, protein 

folding, and translation pathways. 

The number of proteins whose expression was positively 

induced upon salinity stress was significantly higher in the 

roots of salinity-tolerant KH-65 than that of the PBW-373 

roots. Only 12 proteins could be recorded as upregulated 

among the top 10 biological processes of the roots of PBW-

373 (Tables 1-4). Moreover, the fold induction too was also 

high in the tolerant line. Similarly, the number of participant 

proteins in an interaction network of the KH-65 roots was 

higher than that of the PBW-373 cultivar. The observation 

may be correlated with the efficient salt tolerance capacity of 

KH-65. A higher number of high expressing proteins in 

interaction networks has also been associated with the salt 

tolerance capability.14 

The upregulated proteins of the tolerant cultivar included 

pyruvate kinase. Glycolytic proteins have been proposed to 

maintain energy balance in salt-tolerant plants during stress 

conditions.36 Similarly, the tolerant line was found to respond to 

salt stress by modulating various transcription regulatory 

proteins. The finding was in conformation with other 

reports.37 A transcription regulatory protein, Auxin responsive 

protein, has also been associated with tolerance mechanism 

via suppression of auxin-regulated genes.38 Other proteins in 

the interactomes whose role in coping with salinity stress has 

been reported including, Heat shock protein 90,39 HATPase c 

domain-containing protein,40 S4 RNA-binding domain-

containing protein,41 60S ribosomal protein L18a,42 TFIIB-

type, and WD repeats region domain-containing proteins.38 

Root directly interacts with the soil and is the first site to 

counter the soil’s high salt concentration.43 The robust 

response of the roots of the resistant line was expected. All 

stress conditions induce a cascade of reactions involved in 

various physiological processes to counter-balance the damage 

due to the stress condition. The plants are known to counter 

salinity stress by causing various biological phenomena that 

include altered gene expression to modulate growth and 

development, ion transportation and storage of excess ions, 

and production of compatible solutes like anti-stress proteins, 

including chaperons and HSPs.44 All these processes involve 

the activation of a great deal of plant machinery that may 

reflect the upregulation of numerous proteins that act in 

tandem to manifest the tolerance mechanism. 

 

Conclusion 

The study provides an insight into a relation between 

protein-protein interaction networks for a group of interacting 

proteins amid salt stress. A higher number of high expressing 

proteins in interaction networks in the salt-tolerant variety 

than the sensitive one may be seen under the light of more 

increased salt tolerance capabilities of the Salt-tolerant KH-

65 line. Further in-depth studies are needed to validate the 

findings. 
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