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Introduction  

Somatostatin (SST) is a versatile hormone that is mainly 

involved in the regulation of nutrients entry from the 

digestive tract into the blood circulatory system. Since its 

discovery over more than four decades, the ubiquitous 

distribution and the multifunctional roles of the SST are still 

being documented.1 The broad distribution of SST throughout 

the body has been widely reported, but it has mainly 

localized within the central nervous and digestive systems. It 

has been recognized that this gene acts as the main 

regulating factor involved in determining the onset of 

several metabolic pathways. The SST gene has positioned on 

chromosome 3, within the q27.3. It consists of two exons 

separated by one intron, with an open reading frame encoding 

up to 116 amino acids. The pharmacological doses of this 

hormone have been reported to hinder all gastrointestinal 

functions by exerting direct effects on the secretion of 

several crucial hormones in several portions of the body.2 

The SST undergoes a scheduled regulatory task by reducing 

the concentrations of various hormones that control the rate 

and storage of glucose, fatty acids, and amino acids in the 

body, such as insulin and glucagon.3 Furthermore, the 

secretions of several gastrointestinal hormones, including 

gastrin, secretin, Vasoactive Intestinal Polypeptide (VIP), 

and cholecystokinin, have been shown to be inhibited by 

SST.4 The SST has been shown to exert antiproliferative 

effects on some human tumors via both direct and indirect 

mechanisms. In addition, the platelets-derived growth factor 

receptor phosphorylation has been reported to decrease by 

SST.5 It’s well known that SST participates in endocrine 

regulation through its binding with a series of cognate 

somatostatin receptors (SSTR)s, SSTR1 – SSTR5.6 Actually, 

SST deficiency has been reported to be associated with the 

onset of Alzheimer's disease, wherein its concentration has 

been described to have a considerable reduction in brain 

tissues. There has been quite lot of evidence revealing that 

the deficiency of this hormone may have a noticeable 
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correlation with tumorigenesis.7,8 However, SST-deficient 

mice have shown normal growth rates but they have 

exhibited remarkable elimination of sexually dimorphic liver 

functions.9 Recently, several other metabolic disorders have 

also been associated with dysfunctional SST, such as 

cardiovascular disease,10 hypertension,11,12 vascular dementia,13 

and migraine headache.14 Thus, most mutations causing a 

deficiency in SST may damage the vital role played by this 

hormone in both gastrointestinal and neural activity.15 

Hence, the SNPs observed in the SST can account for 

susceptibility to various metabolic disorders. The standard 

protocols for determining the most damaging nsSNPs are 

time-consuming and expensive. Alternatively, the recent 

revolution in structural biology has made it possible to 

develop precise computations to predict the effects of these 

nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) 

on the structure of protein, stability, and interactions. Several 

recent innovations have been utilized to prioritize nsSNPs by 

providing a cumulative indication for the most deleterious 

nsSNP on the analyzed protein.16-18 Despite the main 

inhibitory role played by SST, no attempt has been made to 

characterize the most important deleterious effects of its 

nsSNPs. Therefore, it is crucial to filter out non-deleterious 

nsSNPs to limit downstream analyses to a handful of 

candidates of amino acid variations. Taking these data into 

account, extensive predictions of the effects of nsSNPs on 

the SST are presented herein with a particular emphasis on 

the mechanisms of the most harmful nsSNPs in manifesting 

their deleterious effects on the 3D structure of the SST 

hormone. Furthermore, molecular dynamic simulation and 

molecular docking were also used to assess the possible role 

of the most deleterious SNPs in altering the functions of this 

essential hormone in the body. 

 

Materials and Methods 

Data Retrieval 

The corresponding databases for the SST gene (Gene ID: 

6750) were analyzed following their rsIDs in November 

2019. All deposited SNPs were retrieved from the NCBI-dbSNP 

(https://www.ncbi.nlm.nih.gov/snp/) database. Subsequently, 

SNPs were verified using the ensemble genome browser 96 

(https://asia.ensembl.org/index.html). 

 

Sequence-based Predictions 

The effects of the retrieved nsSNPs on the protein structure 

and biological activity were predicted using 10 major and 

widely accepted in silico tools since the combined effects of 

these tools would largely improve the prediction accuracy. 

These tools relied only on the primary sequences of amino 

acid residues. Accordingly, a cumulative approach was 

applied for all retrieved nsSNPs to obtain the best possible 

computations. The potentially deleterious effects of nsSNPs 

were predicted using Sorting Intolerant From Tolerant 

(SIFT),19 Polymorphism Phenotyping (PolyPhen)-2,20 Rare 

Exome Variant Ensemble Learner (REVEL),21 Protein 

Variation Effect Analyzer (PROVEAN),22 Protein Analysis 

Through Evolutionary Relationships (PANTHER),23 SNAP2 

(Predicting Functional Effect of Sequence Variants),24 PhD 

SNP (Predictor of Human Deleterious Single Nucleotide 

Polymorphisms),25 Mutation Assessor,26 SUSPect (disease-

susceptibility-based SAV phenotype prediction),27 and UMD-

Predictor.28 The cumulative outcomes of the utilized tools 

were assessed for each analyzed nsSNP. 

 

Structure-based Predictions 

The UniProtKB accession number for SST is P61278, and 

its NCBI reference sequence is NP_001039.1. The full-

length 3-D structure of SST is available in the data deposited 

in the Protein Data Bank (PDB) server (https://www.rcsb.org/), 

under the number 1P2W; it covers the entire 116 amino acid 

residues of the SST protein. The efficiency of the deposited 

3D structure of SST was re-evaluated by Qualitative Model 

Energy Analysis (QMEAN),29 and by the side chain parameters 

and Psi/Phi Ramachandran plot of the PROCHECK server.30 

To validate the sequence-based approach, a parallel PDB 

structure-based approach was also utilized to prioritize all 

deposited nsSNPs of the SST gene. Structure-based predictions 

were also conducted by 10 well-known in silico tools, 

including I-Mutant2,31 MAESTRO (Multi Agent Stability 

Prediction upon Point Mutations),32 STRUM (STRucture-

based stability change prediction Upon single-point Mutation),33 

Mupro,34 iStable (integrated predictor for Protein Stability 

change upon single mutation),35 Cologne University Protein 

Stability Analysis Tool (CUPSAT),36 DynaMut,37 mutation 

Cut-off Scan Matrix (mCSM),37 SDM,38 and DUET.39 

 

In-depth Prediction of the Most Damaging nsSNPs  

The entirely deleterious nsSNPs in both sequence-based and 

structure-based, predictions were considered for further 

downstream analyses, in which the potentials of the mutant 

SST forms to bind with ligands or receptors were analyzed 

using several protein-protein and protein-ligand prediction 

tools. Accordingly, several commonly used tools were 

utilized to assess the role of these entirely deleterious 

nsSNPs in altering the binding activity with ligands, proteins, 

or receptors, including RaptorX,40 COACH,41 TM-SITE,42 

COFACTOR,43 FINDSITE,44 and ConCavity.45 The evolutionary 

conservation grades of these SNPs were analyzed using a 

Bayesian calculation method by the ConSurf server.46 To 

understand the effect of the most damaging SNPs on the 3D 

structure of SST, site-specific computational mutagenesis 

was conducted by mutating the native SST with its mutant 

forms using the Mutate script from the Swiss model PDB 

viewer tool ver.4.1.0.47 The normal SST protein and its risky 

mutants’ were superimposed with each other using the 

Superpose tool.48 This tool measures the possible differences 
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in the flexibility of protein structures as revealed by the 

analysis of variations between different PDB models of the 

same protein. Afterward, each 3D model was subjected to 

refinement to remove overhaul distorted geometries using 

the steepest descent energy minimization provided by 

Gromacs parameter set.49 Further in-depth in silico analyses 

were conducted to give further confirmation of the damaging 

role of both risky nsSNPs on the modeling of the mutant 

proteins. The modeling and conformational transitions, and 

the modeling flexibility of normal and mutant protein 

systems were conducted using the dynamic simulations of 

the recent release of the CABS-flex 2.0 server.50 To reveal 

changes at the atomic level in different time scales for native 

SST as well as the mutant L13P and G104S complexes, MD 

simulations were performed using the Nanoscale Molecular 

Dynamics (NAMD) program.51 Before starting the simulation, 

the structures of native and mutant proteins were cleaned, 

and also the H-bond network was optimized. Then, a cubic 

cell was formed by extending 6 Å on each side of the protein 

and a periodic boundary condition was maintained. 

Configuration files for MD simulations were generated by 

the CHARMM-GUI web server.52 All systems were solvated 

using transferable intermolecular potential water molecules 

model.53 MD simulation of each system was run at 310 K to 

evaluate DIHED (dihedral angles) distortions, and Root 

Mean Square Deviation (RMSD). Atom trajectories were 

analyzed using Visual Molecular Dynamic (VMD, ver. 

1.9.3).54 MD simulation files were retrieved from VMD and 

plotted using Qtgrace visualizer tool ver. 2.6. 

 

Docking 

To know the most corresponding receptors for the binding 

with SST, the String-10 webserver was employed to predict 

the network interactions between SST and the other proteins 

in the cell.55 Then, the currently observed deleterious L13P 

and G104S nsSNPs may alter these cellular controls by 

disrupting these variable interactions. Hence, docking 

experiments of both native and mutant SST forms were 

performed with those proteins known to be recognized from 

the SST with the highest affinity. The refined PDB forms of 

normal SST, as well as its most dangerous mutant forms, 

were subjected to molecular docking with their substrate 

using High Ambiguity-Driven Bimolecular Docking 

(HADDOCK) tool.56 The default settings of the HADDOCK 

server were used to dock the wild SST, mutant L13P, and 

G104S structures against SSTR1-SSTR5. The putative 

protein-protein interaction sites for SSTR, L13P, G104S, 

SSTR1, SSTR2, SSTR3, SSTR4, and SSTR5 were determined 

using the meta server for protein-protein interaction site 

prediction (meta-PPISP server).57 The amino acid residues 

involved in each conducting docking experiment were 

visualized using PyMol software ver. 7.0.1 (The PyMOL 

Molecular Graphics System, Schrödinger, LLC.). 

 

Results 

Data Retrieval Output 

A total of 511 SNPs were retrieved from the NCBI-dbSNP 

and were verified from the ensemble genome browser 96, 

including two splice acceptor variants, two stop gained, 84 

missense mutations (or nsSNPs), 11 splice region variants, 

40 synonymous variants, 51 coding sequence variants, 30 5ʹ 

UTR, 42 3ʹ UTR, and 249 intronic variants (Figure 1A). All 

of the retrieved 84 nsSNPs of the SST protein were selected 

for the downstream in silico predictions.  
 

 
 
Figure 1. Distribution and Description of All Single-nucleotide Polymorphisms (SNPs) in SST Gene, Including Splice Acceptor, Stop Gained, 

Missense, Splice Region, Synonymous, Coding Sequence, 5ʹ-UTR, 3ʹ-UTR, and Introns Variants (a). The number of predicted damaging non-

synonymous SNPs (nsSNPs) in the SST gene by 10 different sequence-based in silico tools (b). The number of predicted damaging nsSNPs in SST 

gene by 10 different structure-based in silico tools (c). The green color refers to nsSNPs, while the red color indicates the damaging effects of 

nsSNPs predicted by state-of-the-art in silico tools. 
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Table 1. Cumulative Predictions for the Entirely Deleterious Nonsynonymous SNPs of SST Protein as Seen by 20 in silico Tools. A) sequence-based 

prediction made by ten in silico tools. B) structure-based prediction made by ten in silico tools. prediction values were calculated using DDG 

values, which presented to indicate free energy change upon mutation 

A) Sequence-based prediction 

Variant ID mutation SIFT PolyPhen  REVEL PROVEAN PANTHER  SNAP2  PhD SNP 
Mutation 

assessor 
SUSPect 

UMD-

Predictor 

rs1250282492 L13P 0 0.997 0.604 -4.505 456 76 7 0.789 92 84 

rs778060901 G104S 0.01 0.999 0.579 -4.032 456 69 4 0.694 91 84 

B) Structure-based prediction 

Variant ID mutation I-Mutant2 MAESTRO STRUM Mupro   iStable CUPSAT DynaMut mCSM   SDM   DUET 

rs1250282492 L13P -1.81 1.913 -1.81 -1 -2.27 -1.44 -1.588 -1.494 -2.23 -1.853 

rs778060901 G104S -0.84 0.950 -1.68 -1 -0.71 -1.48 -0.518 -1.152 -3.08 -1.489 

 

 

Figure 2. A Schematic Diagram for the Entire Study, in Which the 

Most Deleterious Nonsynonymous SNPs (nsSNPs) on Somatostatin 

Were Predicted and Shown as Red Bulls Within a Transparent Surface 

View of Somatostatin. 

 

Sequence-based Predictions 

A total of 10 different in silico tools were utilized to predict 

the deleterious nsSNPs using the primary amino acid 

sequences of the SST, including SIFT, PolyPhen, REVEL, 

PROVEAN, PANTHER, SNAP2, PhD SNP, Mutation Assessor, 

SUSPect, and UMD-Predictor. Cumulative results concerned 

with the prediction of nsSNPs consequences indicated a 

concordant deleterious effect for two nsSNPs, including 

L13P and G104S on SST structure and biological activity 

(Table 1). However, this study was only concerned with the 

entirely deleterious nsSNPs. Thus, other deleterious SNPs 

that did not exhibit a concordant deleterious effect were 

eliminated from further analyses (Suppl. Table 1). Out of 

the 84 nsSNPs, the total number of damaging nsSNPs 

reported from all tools were described, in which Panther and 

STRUM predicted the highest number of deleterious SNPs 

among all sequence-based and structure-based in silico 

tools, respectively (Figure 1, B and C). 

 

Structure-based Predictions 

The effects of nsSNPs on protein structure, function, and 

stability were also analyzed by another set of 10 

computational tools based on the PDB-based 3D structures 

of SST, including I-Mutant2, MAESTRO, STRUM, Mupro, 

iStable, CUPSAT, DynaMut, mCSM, SDM, and DUET. 

Cumulative results indicated concordant deleterious effects 

of seven nsSNPs, including L13P, L13V, I15T, I15F, 

V16A, V22A, A25S, R30G, L31P, R32G, F34V, A43T, 

E47G, A49S, and A54G (Suppl. Table 2). Thus, both 

sequence-based and structure-based predictions revealed 

concordant deleterious effects of only two nsSNPs, namely 

L13P and G104S (Figure 2). 

 

In-depth Analyses of the Entirely Damaging SNPs 

Further analyses were conducted on the most deleterious 

L13P and G104S nsSNPs to explore the pattern of each one 

to cause such drastic alteration in the mutant SST protein. 

The conducted ConSurf results revealed a higher conserved 

status of G-104 residue over L-13 residue (Figure 3). 

Moreover, a dynamic role was revealed from G-104 residue 

since it was located in a functional-exposed portion as it 

was predicted from the neural network-based ConSurf tool. 

Further details were provided from the 3D of SST. The 

main functional domains in the 3D structure of SST were 

highlighted starting from N-terminal to C-terminal, including 

a signal peptide, neurostatin, propeptide, somatostatin-28, 

and somatostatin 14 (Figure 4). From this tertiary structure, 

it was shown that L13P and G104S were resided in the signal  
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Figure 3. The Evolutionary Conservative Positioning of the Most Deleterious Nonsynonymous SNPs (nsSNPs), L13P and G104S, Identified in 

Somatostatin. The grade of the conservation pattern of both amino acid residues is highlighted within the primary sequence of the wild-type 

somatostatin. Color intensity increases with the degree of conservation. The amino acids are colored based on their conservation grades and 

conservation levels. The amino acid positions of the most two deleterious nsSNPs are indicated by red arrows. 

 

peptide and somatostatin-14, respectively. The nature of the 

polar interactions of the observed most deleterious L13P 

and G104S nsSNPs observed in the signal peptide and 

somatostatin-14 regions was tested by PyMol to understand 

their potential participation in the conversion of the native 

amino acid binding with its surrounding residues. A substantial 

alteration in electrostatic interactions was seen in the SST 

upon mutation with both L13P and G104-S (Figure 5, A and B).  

 

 
 

Figure 4. The Main Functional Domains Within Somatostatin Within a 

Transparent Surface View of Somatostatin. Five domains are 

highlighted in somatostatin 3-dimensional structure, including signal 

peptide (red), propeptide (yellow), neurostatin (orange), somatostatin-

28 (green), and somatostatin-14 (blue). 

Concerning G104S, it was found that the Gly-104 residue 

had one polar interaction with Glu-100 residue, of 3.0 Å 

length, in the native SST protein, while Ser-104 residue 

formed two extra polar interactions with Lys-102 residue, of 

3.4 Å length, in the altered SST form.  Considering L13P, 

the amino acid residue Leu-13 exerted no polar interaction 

with any other residues in the native SST, while Pro-13 

residue formed one polar interaction with the surrounding 

Leu-10 residue, of 3.4 Å length, in the mutant SST form. 

Results showed no post-translational effects for both L13P 

and G104S nsSNPs. The possibility of these highly risky 

nsSNPs to alter the binding activity with other proteins was 

analyzed by utilizing seven prediction tools, namely 

RaptorX, COACH, TM-SITE, S-SITE, COFACTOR, 

FINDSITE, and ConCavity. The FINDSITE tool indicated 

the obvious involvement of G104S in the alteration of the 

binding activity of the mutant SST with receptors (Table 2). 

The conducted superimposition of the native SST and its 

two mutant models indicated very close homology between 

the native template and both models (Figure 6). This 

observation revealed a fair superimposition of the native 

SST with its two mutant forms. The total energy values for 

the native SST structure and the two mutant modeled L13P 

and G104S structures were -1849.877, -1778.814, and -

1901.481 KJ/mol, respectively. L13P showed a noticeable 

increase in energy than the native structure. These less 

favorable changes indicated a more deleterious nature of the 

L13P model than the G104S model in inducing broader 

structural instability in the altered G104S SST form than the 

L13P SST form. Further analyses were performed to assess  
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Figure 5. The Alteration in Polar Interactions of the Native Somatostatin 

and Its L13P and G104S Mutant Forms, in Terms of the Most 

Deleterious Amino Acid Residues with Vicinal Units Before and After 

Mutation. A) Native somatostatin, in which no polar interaction was 

observed in Leu (L)-13 residue, while only one polar interaction with 

Glu-100 was observed with Leu-104. B) Mutant somatostatin, in 

which one polar interaction between Pro-13 and Leu-10 was seen, 

while two interactions were observed between the mutant Ser-104 

and both Glu-100 and Lys-102. The connection (yellow dotted lines) 

lengths between residues were measured in Å dimensions. 

 

 
 

Figure 6. Spatial Superimposition of the Native Somatostatin and The 

Most Deleterious Mutants Predicted in This Study. 3D model of native 

somatostatin superimposed and its mutant protein having a mutation 

from Leu(L) to Pro(P) at 13th position and from Gly(G) to Ser(S) at 

104th position in (a) and (b) respectively.  The green and blue colors 

refer to wild-type and mutant forms, respectively. Superimposition 

was viewed by PyMol software. 

 

the overall effect of each identified deleterious nsSNP on 

the 3D modeling of the SST structure flexibility. The 

damaging effects of L13P and G104S models were further 

demonstrated by comparing the RMSF peaks for normal 

and mutant SST models. Results of dynamic simulation, 

flexibility, structural clustering, and dynamic protein 

fluctuations differences between normal and mutant models 

provided additional proof for the ability of L13P and G104S 

SNPs to damage the 3D structure of the SST protein (Figure 7). 

A comparative MD analysis of the predicted deleterious 

mutants L13P and G104S with the native SST was carried 

out. In the conducted simulation trajectory, two different 

parameters were applied to analyze the level of structural 

changes in these models by using different parameters, namely 

 

Figure 7. Aggregation Propensity Simulation and Fluctuation Plots for 

the Wild-type SST and Its Deleterious Models. A) Wild-type SST 

protein.  B and C) Deleterious L13P and G104S models. RMSF: Root 

mean square fluctuation. 

 

bond, angle, DIHED, and RMSD. The DIHED analysis based 

on MD trajectories showed a respective higher deviation for 

G104S and L13P than that found in the wild SST. This 

observation entailed the possible participation of G104S, 

and with a little extent L13P, in inducing a conformational 

change in the SST 3D structure (Figure 8A). Further 

confirmation was observed from RMSD calculations that 

showed that the mutant G104S had exhibited a remarkable 

deviation in the backbone RMSD than that found in L13P 

and the wild SST respectively in almost all conducted 

simulation times (Figure 8B). 

 

Docking with Somatostatin Receptors 

String 10 server showed that SST mainly interacts with a 

variety of cognate SST-receptors, including SSTR1-SSTR5, 

which mainly participate in the control of several metabolic 

events in the cell (Figure 9). Subsequently, the molecular 

docking between the normal SST and its two risky mutant 

forms with SSTRs (SSTR1-SSTR5) was performed to 

identify the extent of variation in the overall SST-SSTR 

interaction energy before and upon mutation. Using the 

RaptorX tool,40 five 3D models were generated to represent 

SSTR1-SSTR5, respectively. However, the docking of this 

specified SSTRs molecule with SST protein indicated a 

clear role of the L13P and G104S in inducing a remarkable 

change in the binding with SSTR2 and SSTR5, while less 

dramatic effects were observed in the binding with SSTR1, 

SSTR4, and SSTR3 respectively (Table 3). Compared with
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Table 2. The Mechanisms of Deleterious Effects of the Most Damaging Missense SNPs of Somatostatin. A) Post-translation modification prediction, B) receptor binding prediction. Symbols phos., ubi., meth., 

SUMO., O-GalNAc., O-GlcNAc., N-Gly., K-Ace., N-t-ace. refer to phosphorylation, ubiquitination, methylation, sumolation, O-N-acetylgalactosamination, O-N-acetylglucosamination, N-glycosylation, K-acetylation, 

N-t-acetylation respectively 

SNP Amino acid correspondence Altered binding with ligands/receptors upon mutation 

  RaptorX COACH TM-SITE S-SITE COFACTOR FINDSITE ConCavity 

rs1250282492 L13P - - - - - - - 

rs778060901 G104S - - 0.13* - - - - 

* C-score is the confidence score of predicted binding site. C-score ranges [0-1], where a higher score indicates a more reliable prediction 

 
Table 3. Molecular Docking Differences Between the Native and Two Risky Mutant Forms of SST as Determined by the HADDOCK Webserver  

Protein-protein 

interaction 
HADDOCK score Cluster size 

RMSD from the 

overall lowest-

energy structure 

Van der Waals 

energy 

Electrostatic 

energy 

Desolvation 

energy 

Restraints violation 

energy 
Buried Surface Area Z-Score 

SST-SSTR1 -50.6 +/- 9.1 185 1.1 +/- 1.0 -74.8 +/- 7.0 -40.3 +/- 15.5 -22.0 +/- 1.5 542.3 +/- 61.1 2556.2 +/- 138.1 -1.3 

L13P-SSTR1 -52.2 +/- 8.2 183 1.1 +/- 1.0 -75.9 +/- 5.7 -42.5 +/- 13.2 -21.2 +/- 2.7 534.5 +/- 70.7 2564.2 +/- 124.3 -1.3 

G104S-SSTR1 -44.9 +/- 8.2 186 1.3 +/- 1.1 -69.7 +/- 7.3 -31.9 +/- 11.0 -21.5 +/- 1.9 526.4 +/- 65.7 2479.3 +/- 151.3 -1.3 

SST-SSTR2 -59.5 +/- 5.9 19 11.0 +/- 0.1 -55.1 +/- 6.8 -449.4 +/- 62.9 -13.0 +/- 14.0 984.2 +/- 70.9 2547.1 +/- 143.6 -1.4 

L13P-SSTR2 -54.7 +/- 8.9 12 0.7 +/- 0.5 -58.0 +/- 3.9 -315.9 +/- 11.5 -23.0 +/- 3.0 895.0 +/- 89.9 2403.5 +/- 57.0 -1.6 

G104S-SSTR2 -38.1 +/- 8.3 49 0.8 +/- 0.6 -78.4 +/- 10.6 -252.2 +/- 70.1 -4.1 +/- 2.6 948.9 +/- 106.1 2670.5 +/- 96.0 -2.3 

SST-SSTR3 115.7 +/- 6.2 16 14.3 +/- 0.0 -78.7 +/- 3.4 -124.7 +/- 29.6 -10.3 +/- 1.5 2296.1 +/- 58.5 2732.7 +/- 37.8 -1.6 

L13P-SSTR3 105.3 +/- 9.8 10 0.5 +/- 0.3 -92.8 +/- 5.6 -94.2 +/- 20.0 -12.8 +/- 2.4 2296.4 +/- 139.0 2941.4 +/- 110.1 -1.6 

G104S-SSTR3 100.8 +/- 19.8 16 0.6 +/- 0.4 -69.1 +/- 4.7 -157.0 +/- 35.6 -14.3 +/- 2.4 2156.7 +/- 204.9 2755.4 +/- 44.4 -1.5 

SST-SSTR4 20.4 +/- 2.8 46 0.6 +/- 0.4 -69.7 +/- 7.2 -126.1 +/- 45.9 -24.0 +/- 4.9 1393.6 +/- 110.1 2601.5 +/- 121.1 -1.7 

L13P-SSTR4 8.2 +/- 9.4 22 0.5 +/- 0.3 -65.7 +/- 3.4 -155.5 +/- 14.5 -22.9 +/- 4.1 1278.0 +/- 27.3 2557.9 +/- 25.5 -2.1 

G104S-SSTR4 12.4 +/- 7.4 34 0.4 +/- 0.2 -65.5 +/- 2.6 -161.6 +/- 12.2 -24.9 +/- 2.4 1351.9 +/- 73.5 2592.3 +/- 50.8 -1.9 

SST-SSTR5 45.8 +/- 10.2 5 3.5 +/- 0.4 -64.6 +/- 2.6 -60.5 +/- 14.7 -30.8 +/- 1.6 1534.1 +/- 98.3 2570.8 +/- 116.9 -1.8 

L13P-SSTR5 29.4 +/- 13.7 17 1.0 +/- 1.0 -70.1 +/- 6.8 -62.2 +/- 16.5 -25.2 +/- 2.8 1371.0 +/- 99.5 2587.5 +/- 58.2 -1.4 

G104S-SSTR5 34.4 +/- 30.9 4 0.6 +/- 0.3 -79.5 +/- 12.2 -90.0 +/- 27.1 -27.0 +/- 1.9 1588.3 +/- 154.8 3218.9 +/- 75.6 -1.4 
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Figure 8. Molecular Dynamic Simulations of the Wild SST, Mutant L13P, and G104S on SST Protein. A) Dihedral angle distortion (DIHED) of the 

three models in 5000 ns. B) Root mean square deviation (RMSD) of the three models in 1000 ns. The symbol coding scheme is as follows: native 

(black colour), mutant L13P (red colour), and G104S (green colour). 

 

the wild SST-SSTR1 (Figure 10A), only a slight contribution 

of L13P was seen in the docking against SSTR1 because no 

substantial conformational changes were observed in this 

complex than that found in the docking of the wild SST 

with SSTR1 (Figure 10B). However, fewer amino acid 

residues were involved in L13P-SSTR1 compared with the 

wild SST-SSTR1. The same thing was also observed in the 

case of G104S-SSTR1 with slight alterations in amino acid 

interactions (Figure 10C). Concerning SSTR2, noticeable 

alterations were observed in the docking of SSTR2 against 

the wild SST (Figure 11A), L13P (Figure 11B), and G104S 

(Figure 11C). Interestingly, L13P exerted more conformational 
 

 
Figure 9. The Functional Association Network of the Somatostatin 

(SST) With Its Corresponding Receptors (SSTRs) in the Cellular 

Metabolic System. The predicted protein-protein interaction network 

is represented with variable extending threads. The color of these 

threads refers to the intensity of binding between somatostatin and its 

five (SSTR1-SSTR5) receptors. The yellow arrow refers to the targeted 

somatostatin protein. 

changes than that observed in G104S. Concerning docking 

of SSTs-SSTR3, results showed moderate alterations among 

SST-SSTR3 (Figure 12A), L13P-SSTR3 (Figure 12B), and 

G104S-SSSTR3 (Figure 12C). As in the case of SSTR2, 

docking of L13P-SSTR3 exhibited more conformational 

changes than that observed in G104S. However, the amino 

acid residues involved in G104S-SSTR3 were less than 

those contributed in L13P-SSTR3 and SST-SSTR3 respectively. 

Concerning SSTR4, no remarkable conformational differences 

were observed in the docking of SSTR4 against the wild 

SST (Figure 13A), L13P (Figure 13B), and G104S (Figure 

13C). However, higher amino acid interactions were involved 

in both L13P-SSTR4 and G104S-SSTR4 compared with the 

wild SST-SSTR4. Another remarkable binding alteration 

was also observed in the binding of these three models with 

SSTR5 (Figure 14A-C). Both L13P and G104S exerted a 

noticeable binding alteration with SSTR5 compared to what 

was observed in the native SST. These differences were 

observed in the presence of obvious alterations in 3D 

conformations and the number of amino acid residues 

involved in these docking experiments. 

 

Discussion 

The current study used many computational tools based on 

the variable of algorithms to prioritize the most dangerous 

amino acid substitutions on the SST protein. The number of 

nsSNPs highly exceeded the number of SNPs detected in the 

untranslated regions. This observation indicates the crucial 

importance of these amino acid substitutions in acting on the 

structure of the SST gene products. Hence, the necessity to 

determine whether each nsSNP having neutral or deleterious 

consequences is mandatory to be prioritized by the available 

tools. To be a damaging missense SNP for a particular 

amino acid, it must be validated by at least four in silico 

tools usually used in SNP Prediction.58,59 Accordingly, the 

retrieved nsSNPs were extensively analyzed to assess their  
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Figure 10. The Comparative Docking Views for the Binding of the Native Somatostatin and Its Highly Damaging Mutant Forms of L13P and G104S 

with Somatostatin Receptor 1 (SSTR1) Substrate. A) docking view of the wild SST with SSTR1. B) Alteration in docking view of the mutant L13P SST 

with SSTR1. C) Alteration in docking view of the mutant G104S SST with SSTR1. SST and SSTR1 are denoted in red and green, respectively.  

 

 

 
 
Figure 11. The Comparative Docking Views for the Binding of the Native Somatostatin and Its Highly Damaging Mutant Forms of L13P and G104S 

with Somatostatin Receptor 2 (SSTR2). A) docking view of the wild SST with SSTR2. B) Alteration in docking view of the mutant L13P SST with 

SSTR2. C) Alteration in docking view of the mutant G104S SST with SSTR2. SST and SSTR2 and their amino acid interactions are denoted in red and 

green, respectively. 
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Figure 12. The Comparative Docking Views for the Binding of the Native Somatostatin and Its Highly Damaging Mutant Forms of L13P and G104S 

with Somatostatin Receptor 3 (SSTR3). A) docking view of the wild SST with SSTR3. B) Alteration in docking view of the mutant L13P SST with 

SSTR3. C) Alteration in docking view of the mutant G104S SST with SSTR3. SST and SSTR3 and their amino acid interactions are denoted in red and 

green, respectively. 

 

cumulative effects on structure, function, and stability. 

Though sequence-based prediction tools are working on 

diverse principles, they only require amino acid residues in a 

FASTA format as the input sequence. Whereas the tertiary 

structure represented by the PDB file is extremely mandatory 

as an input template for structure-based prediction tools.60 

Based on both approaches, two SNPs, L13P (rs1250282492) 

and G104S (rs778060901), were disclosed with completely 

deleterious consequences on protein structure, function, and 

stability. For this reason, it is necessary to understand the 

mechanisms through which each risky SNP is relied on to 

undertake its scheduled damaging role on SST. Add to that, 

further in-depth analyses were utilized to apprehend how 

such SNPs affect the interaction of other proteins in the 

metabolic pathways in which SST is being involved. 

The higher degree of evolutionary conservation of L-13 

and G-104 residues may justify some of their serious 

contributions in damaging SST. However, the evolutionary 

conservation results indicated a more dynamic role for G-

104 in disrupting SST. This is due to the highly functionally 

conserved positioning of G-104 in the primary structure of 

SST than the buried and less conservative position occupied 

by L-13. The highly dynamic role of G104S was also 

confirmed by the analysis of 3D structure due to its 

distinctive position within the somatostatin-14 domain. 

Whereas L-13 residue was located in the SST signal portion 

that may take a different role in the SST mode of action.  

More confirmation for the dramatic changes played by 

G104S over L13P was revealed from the nature of polar 

interactions. The substitution of non-polar Gly-104 to the 

polar Ser-104 may lie behind the substantial alteration 

detected in the mutant G104S. However, the conversion of 

the non-aromatic Leu-13 to the aromatic Pro-13 was also 

crucial to SST functions.  

To further evaluate our hypothesis as to whether L13P and 

G104S mutants have a deleterious effect on SST protein, 

MD simulation analysis was performed to observe the effect 

of each mutation on the structural dynamics of the SST 

protein. It was inferred from RMSD values that both G104S 

and L13P mutants were very unstable from the beginning of 

the simulation over the period of 1000 ns. The higher 

fluctuation and the loss of stability might be explained in 

terms of the structural differences in the amino acid 

backbone in both observed mutations, which referred to  
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Figure 13. The Comparative Docking Views for the Binding of the Native Somatostatin and Its Highly Damaging Mutant Forms of L13P and G104S 

with Somatostatin Receptor 4 (SSTR4). A) docking view of the wild SST with SSTR4. B) Alteration in docking view of the mutant L13P SST with 

SSTR4. C) Alteration in docking view of the mutant G104S SST with SSTR4. SST and SSTR4 and their amino acid interactions are denoted in red and 

green, respectively. 

 

 

Figure 14. The Comparative Docking Views for the Binding of the Native Somatostatin and Its Highly Damaging Mutant Forms of L13P and G104S 

with Somatostatin Receptor 5 (SSTR5). A) docking view of the wild SST with SSTR5. B) Alteration in docking view of the mutant L13P SST with 

SSTR5. C) Alteration in docking view of the mutant G104S SST with 5 SST and SSTR5 and their amino acid interactions are denoted in red and 

green, respectively. 
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significant structure transitions when compared to the native 

SST structure.  

In addition to MD simulation, it is mandatory to investigate 

the role of both nsSNPs in inducing any possible interruption 

with respect to SST binding with its cognate SSTRs. Docking 

experiments were performed between the tertiary structures 

of normal SST and its deleterious mutants with all five 

SSTRs. Though no significant contribution of L13P and 

G104S was observed in changing SST binding with SSTR1, 

SSTR3, and SSTR4, a clear conformational change was 

proven in the binding with SSTR2 and SSTR5. Considering 

SSTR2, an interesting change in the binding energy of SST 

with SSTR2 was detected in the L13P mutant form. This 

observation attributed to the vital involvement of this amino 

acid substitution in inducing conformational alteration in the 

signal peptide region within the SST with a series of 

undesired consequences in terms of binding with SSTR2. 

Noteworthy, SSTR2 is responsible for inhibiting the secretion 

of pancreatic enzymes upon binding with SST.61 Hence, 

such downstream inhibition might be exposed to disturbance 

as a consequence of this aberrant binding between L13P and 

SSTR2. Interestingly, the signal peptide was reported to be 

involved in directing and sorting SST to the endoplasmic 

reticulum after being synthesized,62 which entails a disruption 

of both processes in the case of L13P mutation. However, 

this interesting conversion induced by L13P was not seen in 

the G104S mutation. Meanwhile, both SNPs induced 

substantial conversions in the binding activity with SSTR5 

by inducing conformational changes in SST. This altered 

SST-SSRT5 binding may be associated with subsequent 

alteration in SSTR5, which has been reported to inhibits 

adenylyl cyclase, activate mitogen-activated protein kinase 

cascade, and mediates antiproliferative action of somatostatin 

in tumor cells.63 The somatostatin-14 domain has widely 

been accepted to be involved in the binding with several 

SSTRs molecules.64 So, both nsSNPs have been shown to 

exhibit obvious alterations in the binding with receptors, 

which cause several damaging effects on the SST-mediated 

cellular hormonal regulation.  

Whatever the pattern each deleterious nsSNP takes in the 

disruption of SST activity, one or more of the SST-mediated 

biological processes would be disrupted, such as the negative 

proliferation of cell proliferation,65 response to nutrients,2 

response to heat, metabolic regulation of growth hormone,66 

neurotransmission control,67 G-protein coupled receptor protein 

signaling,68 and other signal transduction activities.69 As 

well, the implication of dysfunctional SST has also been 

reported in several syndromes, such as schizophrenia, 

depression, Alzheimer’s disease, and bipolar disorder.70 

Thus, the possible pathogenic outcomes of such amino acid 

substitutions deserve more attention in clinical investigations. 

Due to the confirmed ability of these missense SNPs to 

persuade dramatic alterations in SST architecture and its 

subsequent binding with some SSTRs, it can be stated that 

such altered complexes seem to disrupt the consequent cascades 

of the hormonal pathway(s) in which SST is involved. 

 

Conclusion 

This study observed two highly deleterious nsSNPs in SST 

as revealed by 20 state-of-the-art in silico tools whether 

based on a primary FASTA sequence or the tertiary PDB 

structure. Both L13P and G104S risky nsSNPs exhibited 

variable conformational alterations in the binding of SST 

with two of its receptors, SSTR2 and SSTR5. Consequently, 

the presented inclusive data explained the precise role of 

both highly damaging missense SNPs in the disruption of 

the SST conformation. This study gives an in-depth interpretation 

for clinicians to assess the SST-linked syndromes by knowing 

the type, grade, and severity consequences of each deposited 

nsSNP on SST protein. Hence, comprehensive clinical-

based investigations are required on a large-scale population 

to characterize these data for the validation of the findings. 
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