
Introduction
According to the World Health Organization (WHO), 
glioblastoma multiforme is the most common and aggressive 
primary tumor of the central nervous system.1 Although 
radiation is recognized as the most effective nonsurgical 
treatment, the outcomes and control rates are generally poor. 
However, a combination of radiation therapy with hyperthermia 
and chemotherapy can improve the efficacy of treatments.2-4

Temozolomide (TMZ) is an effective alkylating 
antiglioblastoma agent with good penetration into brain tissues. 
It has been proven that TMZ chemotherapy has improved the 
survival of patients from 12 months (radiation alone) to 14.6 
months (combined treatment).5 In hyperthermia therapy, the 
tissue temperature increases to 41-45°C, and cellular function 
changes by inhibiting proliferation and repair enzymes and 
altering DNA conformation. In addition, hyperthermia affects 
the synthesis of nucleic acids, which can promote apoptosis.6,7

In literature, many studies have reported that radiotherapy, 

hyperthermia, and chemotherapy have the potential to induce 
structural and shape changes in glioblastoma cells. These 
changes include membrane blebbing, protein denaturation in 
the nuclear matrix, development of croissant-shaped nuclei, 
loss of spherical shape, increased cell irregularity, abundant 
cytoplasm, necrosis, and nuclei with condensed chromatin; these 
changes are correlated with cytotoxicity and cell damage. These 
studies have also evaluated cell changes after treatment using 
microscopic images.8-14 Morphological and structural changes of 
cells can affect the gray-level intensity distribution of microscopic 
images. These changes can be interpreted both qualitatively (by 
the human eye) and quantitatively (mathematical computation). 
Overall, it is advantageous to determine the potential of these 
gray-level intensity changes in cells as a quantitative marker for 
the assessment of cell damage.

Several techniques, such as colony assay, flow cytometry, 
MTT assay, and cytogenetic analysis, have been introduced to 
measure cell damage. Although these techniques are effective in 
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evaluating cell damage after treatment, they are both expensive 
and time-consuming. It seems that a fast and cost-effective 
technique is required to assess the cells after treatment. The aim 
of the present study was to evaluate the potential of quantitative 
analysis of changes in C6 glioblastoma cell line on microscopic 
images during radiotherapy, hyperthermia, and chemotherapy. 
To the best of our knowledge, this is the first study to extract 
quantitative texture and morphological parameters for the 
prediction of cell damage following these treatment regimens.

Materials and Methods
Cell Culture and Treatment
In this experimental study, the C6 glioblastoma cell line was 
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM), 
supplemented with 10% fetal bovine serum (FBS), 100 units/mL 
of penicillin, and 100 mg/mL of streptomycin. The cell line was 
grown as a monolayer at a density of 104 cells/cm2 in T-25 cell 
culture flasks and kept in a humidified incubator at 37°C (5% 
CO2 and 95% air).

In this study, seven cell culture flasks were prepared for different 
treatments: (1) localized radiofrequency (RF) hyperthermia, i.e., 
alternating magnetic field-activated hyperthermia at a frequency 
of 13.56 MHz to reach 43℃ (HT); (2) TMZ chemotherapy at 
10% inhibitory concentration during 24 hours of incubation 
(TMZ); (3) radiotherapy with 6-MV X-ray beams at the 
radiation dose of 2 Gy (RT); (4) TMZ chemotherapy, followed by 
hyperthermia therapy (HTMZ); (5) radiotherapy at a dose of 2 
Gy, followed by hyperthermia (RTHT); (6) TMZ chemotherapy, 
followed by radiotherapy at a dose of 2 Gy (RTMZ); and (7) 
TMZ chemotherapy, followed by radiotherapy at a dose of 2 Gy 
and hyperthermia (RTMZHT). In addition, one control group 
(C) was prepared to compare and evaluate the effects of the 
treatments. 

For a reliable analysis, glioblastoma cancer cells were cultured 
in T-25 cell culture flasks and incubated for 24 hours; then, 
they were treated in the groups. After treatment, the cells were 
trypsinized, and single-cell suspensions were floated in the culture 
medium. Fifty optical images were acquired using phase-contrast 
inverted microscopy (BEL, Monza, Italy) immediately after each 
treatment regimen. Finally, 400 cell images were acquired and 
exported in “BMP” format for further computerized image 
processing analysis using MATLAB (MathWorks, MA, USA). 
These procedures were repeated three times and the average of 
the results were reported. 

Image Processing and Feature Extraction
Cell Segmentation
Cell segmentation was performed to remove redundant data 
and obtain the region of interest for further quantitative cell 
analysis. Some filters were required to improve the contrast of 
microscopic images and find the proper conditions to succeed in 
cell segmentation.

Contrast-limited adaptive histogram equalization (CLAHE) 
was used to enhance the contrast of cell images.15 The filter was 
applied on small regions of the image (tiles) and was used to cut 
the histogram at some thresholds, followed by equalization; this 
process continued until all the tiles were processed and equalized. 

The CLAHE filter parameters were defined as follows: 
Number of tiles, NumTiles = [8 8]; Contrast enhancement 
limit, ClipLimit = 0.01; and Number of histogram bins used 
to build a contrast enhancing transformation, NBins = 256.

The probabilistic patch-based (PPB) filter divides the image 
into patches and is applied separately on each patch. The new 
value for each patch is calculated by weighted averaging of all 
patches. A shorter Euclidean distance between two patches can 
increase similarity and weight. Therefore, the pixels yield almost 
the same value for similar patches.16 In this study, the PPB filter 
was used to reduce image noise and improve segmentation 
performance.

Although the PPB filter is an effective tool for reducing noise, 
it degrades the contrast resolution of the cell edge. Wavelet filter 
is an ideal candidate for increasing the cell edge contrast. In 
Wavelet filters, image signals are decomposed into two frequency 
channels, i.e., high-pass (H) and low-pass (L). After applying a 
wavelet filter, image decomposes into approximation sub-band 
image (LL) and detail sub-band images (LH, HL, and HH).17 
As we aimed to achieve a high-contrast resolution, the HH 
sub-band image (using Daubechies wavelet decomposition 
mother Family, db1) was considered suitable for improving the 
segmentation performance. 

In this study, active contours proposed by Chan and Vese was 
used to segment the cells for further feature extraction.18 The 
principle of Chan-Vese model for active contours is based on the 
evaluation of pixel distribution inside and outside the curve. The 
active contour finds the curve by minimizing the following term:

2 2
0 1 0 2Insidecurve Outsidecurveu c dx dy  u c dx dy)− ⋅ + − ⋅∫ ∫             (1)

where c1 and c2 are the mean pixel values corresponding to 
the inside and outside the curve, and u0 is the pixel value in the 
(x, y) point. Both the Smooth Factor and Contraction Bias were 
set to zero for active contour segmentation. All the steps of the 
proposed segmentation method are illustrated in Figure 1. After 
successful cell segmentation, two quantitative features were 
extracted: (1) morphological and (2) gradient-based (texture) 
features.

Quantitative Features Extraction
Morphological Features
Seven morphological features were extracted from each cell: (1) 
ratio of major to minor diameter of the ellipse circumscribing 
the cell (extension); (2) ratio of perimeter to convex perimeter 
of the cell (convexity); (3) ratio of area to perimeter of the cell 
(regularity); (4) ratio of maximum to minimum diameter of 
the cell (aspect ratio); (5) ratio of cell area to bounding box 
area (form factor); (6) standard deviation of all radii of the cell 
(Std-radius); and (7) ratio of maximum to minimum distance 
between the gravity and contour of the cell (gravity factor). Figure 
1 demonstrates a graphic representation of each morphological 
feature.

Gradient Features
The image gradient indicates the spatial grey-level intensity 
variations across the image. A high gradient refers to severe 
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changes in intensity, whereas a low gradient implies smooth 
changes in tone. These changes can be interpreted and measured 
by gradient-based features. In this study, four gradient features 
were extracted from the cells to evaluate the intensity changes 
during different treatments: (1) gradient mean (Gr-mean); 
(2) gradient variance (Gr-variance); (3) gradient kurtosis (Gr-
kurtosis); and (4) percentage of pixels with non-zero gradient 
(Gr-nonzero). These gradient-based features are described and 
measured as follows:

( )
,    

1Gr _ mean ,
i j cell region

G i j
M ∈

= ∑                                                            (2)

( )( )2

,    

1Gr _ variance , Gr _ Mean
i j cell region

G i j
M ∈

= −∑
                    

(3)

( )
( )( )4

4
,    

1 1Gr _ kurtosis , Gr _ Mean 3
Gr _ Variance i j cell region

G i j
M ∈

= − −∑       (4)

( )
( )

  , 0
Gr _ nonzeros              ,    

,
number of G i j

i j cell region
G i j

≠
= ∈

                

(5)

where G (i,j) and M represent the absolute gradient matrix and 
number of pixels in the cell region, respectively. A gradient map 
of the cell is presented in Figure 1.

Clonogenic Assay
The clonogenic assay was used to evaluate cell toxicity by 
considering cell reproductive death as an endpoint. After 
treatment, cell viability was evaluated using trypan blue dye 
exclusion assay. Then, single cells were seeded in 60-mm Petri 
dishes, containing the culture medium and 10% FBS and 
incubated at 37°C with 5% CO2 in a humidified incubator. 
After six days, the colonies were counted using an inverted 
phase microscope (BEL, Monza, Italy). The plating efficiency 
and surviving fraction were also determined by the following 
equations:

( ) Number of colonies countedPE % 100
Number of cells seeded

= ×                                 (6)

Colonies countedSurviving fraction  
PECells seeded  
100

=   ×   
 

                                                                                                                  (7)

Statistical Analysis and Classification
The cell data were tested for normality using Kolmogorov–
Smirnov test. One-way analysis of variance (ANOVA) was used 
to determine differences in quantitative features extracted from 
the cells between the groups. Turkey’s post hoc test was also 
applied to compare significant features between the groups. P 
value less than 0.05 was considered significant. The area under 
the receiver operating characteristic (ROC) curve (AUC) was 

Figure 1. Overview of Image Processing Steps and Features Extraction in the Microscope Cell Image Analysis.
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calculated for each significant feature in the groups to evaluate 
classification performance. The AUC values were estimated at 
95% confidence interval. All statistical analyses were performed 
using SPSS version 19.

Results
Surviving Fraction of C6 Cells
Table 1 demonstrates the surviving fraction of the cells during 
different treatment regimens. As compared to the non-treated 
control group, survival fraction of HT, TMZ chemotherapy 
and RT groups decreased to 9%, 16% and 36%, respectively. 
HT in combination with TMZ chemotherapy or RT showed 
15% and 36% reduction in survival fraction compared to HT 
alone, respectively. In addition, a combination of RT and TMZ 
chemotherapy had a lower survival fraction in comparison 
with the other two combined treatments (Survival fraction of 
RTMZ vs. HTMZ vs. RTHT: 46% vs. 76% vs. 55%). Finally, a 
combination of three treatment modalities could induce the 
highest cell damage and had the lowest survival fraction (29%). 
To confirm the proposed method, all the results were compared 
with the surviving fraction.

Morphological Changes After Treatment
Figure 2 presents the images of C6 glioblastoma cell line after 
different treatment regimens. The diagnostic performance 
of morphological parameters in differentiation between the 
treatment regimens is presented in Table 2. Since the highest 
cell damage (the lowest survival fraction of cell) belonged to 
the RTMZHT treatment, all morphological parameters could 
differentiate between the control and RTMZHT groups with an 
AUC of 1. The diagnostic ability of morphological parameters 
decreased by reducing the differences in survival fraction of cells. 
Hence, distinguish performances of morphological parameters 
were below one between the control and the other treatment 
groups. In this regard, the worst performance was attributed 
to convexity in classification of control and HT groups with an 
AUC of 0.571. 

The same trend was seen for classifying treatment groups. 
Thus, groups with higher differences in survival fraction (cell 
damage) had a higher classification performance. As it can be seen 
in Table 1, the highest differences of survival fraction between 
treatment groups belonged to HT and RTMZHT. Therefore, 
the classification performance between HT and RTMZHT was 
higher than the other groups (AUC range: 0.978-1). According 
to AUC, the best and worst morphological parameter for 
classification tasks were aspect_ratio and convexity, respectively 
(Table 2).

Gradient Changes After Treatment
Like morphological parameters, the same trend was seen 
for gradient parameters between classification performance 
and clonogenic assay results (Table 3). In this regard, all the 
gradient parameters could differentiate between the control and 
RTMZHT groups (AUC, 1). In classification of control and other 
treatment groups, diagnostic performance of all parameters was 
lower, which AUC was in the range of 0.555 to 0.951. The worst 
performance was attributed to Gr_Kurtosis in the classification 

Table 1. Effects of Different Treatment Regimens on Colony Formation 
Ability

Treatment Survival Fraction

Control 1.00

HT 0.91

TMZ 0.84

RT 0.64

HTMZ 0.76

RTHT 0.55

RTMZ 0.46

RTMZHT 0.29

HT: Hyperthermia, TMZ: Temozolomide, RT: Radiotherapy, HTMZ: 
TMZ chemotherapy + hyperthermia therapy, RTHT: Radiotherapy + 
Hyperthermia, RTMZ: TMZ chemotherapy + Radiotherapy, RTMZHT: TMZ 
chemotherapy + Radiotherapy + Hyperthermia.

Figure 2. Sample of Gray-Scale Optical Microscope Images of Glioblastoma C6 Cell Line After Different Treatment Regimens: A) control; B) 
hyperthermia; C) temozolomide; D) radiation; E) temozolomide + hyperthermia; F) radiation+ hyperthermia; G) temozolomide + radiation; H) 
temozolomide + radiation + hyperthermia; All of the microscope images were obtained with 400X magnification.
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Table 2. Summary of Performance for Significant Morphological Features in Different Treatment and Associated AUC* Values

Groups Extension Convexity Regularity Aspect_ratio Form_factor Std_rad Grav_factor

C&HT
0.581

(0.475, 0.686)
0.571

(0.466, 0.76)
0.579

(0.477, 0.686)
0.588

(0.483, 0.694)
0.579

(0.471, 0.687)
0.579

(0.475, 0.684)
0.586

(0.482, 0.690)

C&TMZ
0.642

(0.563 0.721)
0.607

(0.623, 0.791)
0.613

(0.532, 0.694)
0.660

(0.587, 0.734)
0.638

(0.560, 0.715)
0.627

(0.549, 0.705)
0.656

(0.542, 0.770)

C&RT
0.785

(0.768, 0.802)
0.732

(0.667, 0.796)
0.754

(0.719, 0.790)
0.788

(0.771, 0.805)
0.770

(0.743, 0.796)
0.757

(0.717, 0.796)
0.788

(0.771, 0.795)

C&HTMZ
0.737

(0.692, 0.783)
0.704

(0.649, 0.860)
0.708

(0.652, 0.764)
0.779

(0.754, 0.800)
0.728

(0.679, 0.776)
0.719

(0.650, 0.789)
0.765

(0.734, 0.795)

C&RTHT
0.798

(0.795, 0.805)
0.755

(0.710, 0.800)
0.782

(0.750, 0.816)
0.812

(0.794, 0.830)
0.793

(0.781, 0.805)
0.789

(0.762, 0.816)
0.799

(0.770, 0.828)

C&RTMZ
0.898

(0.855, 0.941)
0.830

(0.790, 0.870)
0.834

(0.901,0.967)
0.939

(0.917, 0.961)
0.895

(0.887, 0.900)
0.860

(0.816, 0.904)
0.920

(0.852, 0.987)

C&RTMZHT 1.000 1.000 1.000 1.000 1.000 1.000 1.000

HT&TMZ
0.581

(0.488, 0.694)
0.557

(0.450, 0.664)
0.572

(0.467, 0.677)
0.610

(0.621, 0.699)
0.581

(0.477, 0.686)
0.579

(0.475, 0.684)
0.600

(0.595, 0.704)

HT&RT
0.737

(0.666, 0.847)
0.726

(0.647, 0.804)
0.728

(0.574, 0.882)
0.769

(0.688, 0.850)
0.736

(0.689, 0.783)
0.735

(0.689, 0.781)
0.753

(0.676, 0.830)

HT&HTMZ
0.640

(0.591, 0.689)
0.594

(0.507, 0.681)
0.628

(0.548, 0.707)
0.664

(0.598, 0.739)
0.632

(0.588, 0.676)
0.630

(0.551, 0.709)
0.650

(0.577, 0.723)

HT&RTHT
0.779

(0.755, 0.800)
0.742

(0.692, 0.791)
0.746

(0.704, 0.789)
0.785

(0.769, 0.801)
0.771

(0.733, 0.809)
0.747

(0.694, 0.800)
0.780

(0.755, 0.805)

HT&RTMZ
0.794

(0.785, 0.803)
0.780

(0.742, 0.818)
0.785

(0.768, 0.802)
0.820

(0.782, 0.858)
0.793

(0.778, 0.809)
0.790

(0.778, 0.803)
0.795

(0.787, 0.803)

HT&RTMZHT 1.000
0.978

(0.951, 1.000)
0.980

(0.963, 1.000)
1.000

0.999
(0.997, 1.000)

0.984
(0.967, 1.000)

1.000

TMZ&RT
0.730

(0.650, 0.809)
0.704

(0.615, 0.793)
0.710

(0.653, 0.768)
0.751

(0.706, 0.797)
0.728

(0.675, 0.781)
0.725

(0.676, 0.774)
0.731

(0.650, 0.813)

TMZ&HTMZ
0.593

(0.490, 0.596)
0.561

(0.455, 0.667)
0.572

(0.446, 0.680)
0.626

(0.522, 0.730)
0.585

(0.481, 0.690)
0.577

(0.473, 0.682)
0.602

(0.500, 0.703)

TMZ&RTHT
0.759

(0.707, 0.800)
0.734

(0.779, 0.889)
0.736

(0.676, 0.797)
0.772

(0.716, 0.829)
0.747

(0.688, 0.806)
0.741

(0.675, 0.806)
0.770

(0.764, 0.777)

TMZ&RTMZ
0.780

(0.739, 0.861)
0.752

(0.742, 0.761)
0.762

(0.727, 0.797)
0.798

(0.792, 0.800)
0.774

(0.734, 0.815)
0.768

(0.741, 0.785)
0.787

(0.770, 0.800)

TMZ&RTMZHT
0.996

(0.990, 1.000)
0.948

(0.917, 0.985)
0.960

(0.924, 0.997)
1.000

0.990
(0.981, 1.000)

0.961
(0.929, 0.992)

1.000

RT&HTMZ
0.691

(0.584, 0.799)
0.594

(0.489, 0.699)
0.601

(0.498, 0.704)
0.695

(0.493, 0.697)
0.659

(0.550, 0.767)
0.618

(0.516, 0.721)
0.694

(0.589, 0.698)

RT&RTHT
0.607

(0.502, 0.712)
0.580

(0.495, 0.637)
0.592

(0.487, 0.698)
0.630

(0.530, 0.730)
0.596

(0.492, 0.700)
0.593

(0.487, 0.699)
0.618

(0.517, 0.720)

RT&RTMZ
0.741

(0.658, 0.825)
0.710

(0.654, 0.766)
0.718

(0.638, 0.798)
0.747

(0.661, 0.833)
0.731

(0.649, 0.814)
0.726

(0.655, 0.797)
0.745

(0.670, 0.820)

RT&RTMZHT
0.895

(0.888, 0.900)
0.866

(0.838, 0.894)
0.874

(0.849, 0.899)
0.915

(0.892, 0.938)
0.892

(0.878, 0.906)
0.882

(0.849, 0.935)
0.898

(0.823, 0.974)

HTMZ&RTHT
0.716

(0.626, 0.797)
0.677

(0.599, 0.756)
0.696

(0.630, 0.762)
0.735

(0.655, 0.815)
0.709

(0.624, 0.795)
0.700

(0.612, 0.788)
0.729

(0.657, 0.802)

HTMZ&RTMZ
0.760

(0.705, 0.815)
0.720

(0.668, 0.771)
0.737

(0.692, 0.782)
0.781

(0.724, 0.839)
0.754

(0.692, 0.816)
0.745

(0.699, 0.791)
0.770

(0.649, 0.890)

HTMZ&RTMZHT
0.920

(0.893,0.947)
0.893

(0.838, 0.948)
0.909

(0.855, 0.963)
0.933

(0.775, 0.891)
0.912

(0.874,0.950)
0.912

(0.835, 0.989)
0.921

(0.891, 0.951)

RTHT& RTMZ
0.601

(0.499, 0.703)
0.573

(0.464, 0.682)
0. 579

(0.473, 0.685)
0.632

(0.531, 0.732)
0.580

(0.474, 0.686)
0.579

(0.474, 0.684)
0.612

(0.508, 0.716)

RTHT&RTMZHT
0.782

(0.576, 0.787)
0.704

(0.620, 0.788)
0.713

(0.617, 0.810)
0.830

(0.780, 0.880)
0.766

(0.681, 0.851)
0.755

(0.719, 0.790)
0.816

(0.732, 0.889)

RTMZ&RTMZHT
0.739

(0.663, 0.815)
0.652

(0.541, 0.763)
0.693

(0.597, 0.790)
0.773

(0.684, 0.863)
0.712

(0.621, 0.802)
0.706

(0.621, 0.790)
0.762

(0.696, 0.829)

AUC= area under ROC curve; * Numbers in parentheses are 95% confidence intervals.
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Table 3. Summary of Performance for Significant Gradient Features in Different Treatment and Associated AUC* values. 

Groups Gr_Mean Gr_Variance Gr_NonZeros Gr_Kurtosis

C&HT
0.599

(0.496, 0.701)
0.571

(0.458, 0.684)
0.563

(0.459, 0.667)
0.555

(0.440, 0.670)

C&TMZ
0.684

(0.607, 0.761)
0.594

(0.483, 0.705)
0.580

(0.476, 0.683)
0.576

(0.471, 681)

C&RT
0.890

(0.878, 0.902)
0.857

(0.682, 0.833)
0.830

(0.781, 0.879)
0.798

(0.728, 0.871)

C&HTMZ
0.840

(0.791, 0.889)
0.760

(0.823, 0.897)
0.754

(0.674, 0.834)
0.737

(0.684, 0.790)

C&RTHT
0.898

(0.893, 0.903)
0.888

(0.874, 0.902)
0.868

(0.835, 0.901)
0.857

(0.823, 0.891)

C&RTMZ
0.951

(0.901, 0.991)
0.909

(0.893, 0.925)
0.892

(0.860, 0.924)
0.876

(0.858, 0.894)

C&RTMZHT 1.000 1.000 1.000 1.000

HT&TMZ
0.613

(0.499, 0.727)
0.571

(0.463, 0.685)
0.550

(0.435, 0.665)
0.546

(0.441, 651)

HT&RT
0.855

(0.819, 0.891)
0.828

(0.797, 0.919)
0.813

(0.740, 0.887)
0.788

(0.752, 0.824)

HT&HTMZ
0.667

(0.666, 0.868)
0.649

(0.458, 0.740)
0.623

(0.624, 0.822)
0.604

(0.522, 0.686)

HT&RTHT
0.851

(0.814, 0.889)
0.840

(0.808, 0.872)
0.835

(0.789, 0.881)
0.819

(0.776, 0.863)

HT&RTMZ
0.898

(895, 0.905)
0.861

(0.843, 0.879)
0.849

(0.813, 0.886)
0.826

(0.808, 0.854)

HT&RTMZHT 1.000 1.000 1.000
0.991

(0.982, 1.000)

TMZ&RT
0.754

(0.679, 0.830)
0.740

(0.668, 0.812)
0.717

(0.645, 0.789)
0.705

(0.613, 0.798)

TMZ&HTMZ
0.672

(0.569, 0.775)
0.592

(0.490, 0.694)
0.580

(0.478, 0.682)
0.560

(0.451, 0.669)

TMZ&RTHT
0.827

(0.745, 0.909)
0.811

0.759, 0.864)
0.796

(0.735, 0.857)
0.763

(0.689, 0.837)

TMZ&RTMZ
0.851

(0.831, 0.871)
0.832

(0.801, 0.863)
0.812

(0.774, 0.849)
0.806

(0.755, 0.857)

TMZ&RTMZHT 1.000 1.000 1.000
0.982

(0.972, 0.992)

RT&HTMZ
0.696

(0.595, 0.776)
0.668

(0.564, 0.772)
0.628

(0.476, 0.701)
0.614

(0.509, 0.718)

RT&RTHT
0.657

(0.552, 0.762)
0.595

(0.491, 0.699)
0.586

(0.482, 0.690)
0.570

(0.466, 0.674)

RT&RTMZ
0.801

(0.737, 0.864)
0.781

(0.700, 0.763)
0.746

(0.663, 0.829)
0.730

(0.643, 0.817)

RT&RTMZHT
0.919

(0.887, 0.931)
0.898

(0.883, 0.913)
0.891

(0.871, 0.921)
0.868

(0.841, 0.895)

HTMZ&RTHT
0.782

(0.719, 0.845)
0.747

(0.658, 0.836)
0.733

(0.655, 0.811)
0.711

(0.629, 0.793)

HTMZ&RTMZ
0.843

(0.808, 0.878)
0.806

(0.750, 0.862)
800

(0.737, 0.864)
0.783

(0.731, 0.834)

HTMZ&RTMZHT
0.940

(0.916, 0.974)
0.919

(0.886, 0.942)
0.898

(0.865, 0.931)
0.891

(0.871, 0.911)

RTHT& RTMZ
0.680

(0.577, 0.783)
0.639

(0.494, 0.704)
0.653

(0.549, 0.757)
0.596

(0.490, 0.702)

RTHT&RTMZHT
0.864

(0.841, 0.888)
0.828

(0.805, 0.851)
0.816

(0.761, 0.872)
0.808

(0.764, 0.851)

RTMZ&RTMZHT
0.799

(0.741, 0.856)
0.761

(0.790, 0.822)
0.727

(0.646, 0.807)
0.709

(0.645, 0.773)

AUC= area under ROC curve; * Numbers in parentheses are 95% confidence intervals.
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of control and HT groups with AUC of 0.555.
In classification of treatment groups, the best performance 

was achieved for classification between HT and RTMZHT and 
between TMZ and RTMZHT with AUC of 1 for Gr_Mean, 
Gr_Variance, and Gr_NonZeros parameters. Also, the worst 
performance was attributed to Gr-kurtosis in the classification 
of HT and TMZ groups (AUC, 0.546). Other classification 
performances for different treatment regimens are indicated in 
Table 3. On the other hand, with respect to individual gradient-
based parameters, Gr-mean was superior to others, as it showed 
the highest AUC in the classification of different treatment 
groups.

Discussion
This study aimed to evaluate the diagnostic performance of 
quantitative features extracted from microscopic images of 
C6 glioblastoma cells for detecting changes during different 
treatments. The results indicated that morphological and 
gradient-based features can represent cell changes during TMZ 
chemotherapy, hyperthermia, and radiation therapy. According 
to AUCs, gradient-based (Gr-mean) features showed better 
performance in comparison with morphological features in 
identifying cell changes during all treatment regimens; the AUC 
of Gr-mean exceeded 0.599 in all the classification groups. 

Treatment of cells with chemotherapy, hyperthermia, and 
radiation lead to changes in cells. TMZ is an alkylating agent 
that methylate O6 position of guanine in DNA.19 Hyperthermia 
causes the denaturation of proteins, cell membrane changes, 
and induce cell apoptosis.20 Moreover, the biological effects 
of ionizing radiation are due to oxidative stress, double strand 
break of DNA, and chromosomal aberrations21 which can lead 
to cell death. These treatments cause structural, morphological, 
and molecular changes in the cells and the cytotoxic effects of 
them can be analyzed with quantitative features extracted from 
microscopic images.

By analyzing the trends of variation in morphological and 
gradient-based features, it was found that these quantitative 
features were consistent with the colony assay results. By 
increasing damage, the gradient intensity of the cells decreased 

and vice versa, whereas cell membrane irregularity and cell 
extension increased (Figure 3 and Table 1).

The results of the present study indicated that by combining 
different treatment regimens, the diagnostic performance of 
features increased. Several studies have confirmed this effect 
on glioblastoma cells in laboratory tests.22-25 Considering the 
induced cell damage, differences in quantitative features were 
more distinguishable between the cell groups. For instance, 
regarding the aspect ratio, when TMZ chemotherapy and 
hyperthermia therapy were combined, AUC increased from 
0.588 (HT) and 0.660 (TMZ) to 0.779 (HTMZ), respectively 
(Table 2). Similar trends were observed for other features and 
treatment regimens. The best performance was related to the 
classification of control and RTMZHT groups, with an AUC of 
one for all the morphological and gradient-based features (Table 
2 and Table 3). Quantitative feature results were in complete 
agreement with the results of colony assay. The highest cellular 
damage was observed for the RTMZHT group, which had the 
lowest SF value (0.29).

The findings of many studies, which have qualitatively 
evaluated cell morphology after treatment, are not consistent 
with our results. Antal et al treated glioma cells with radiation 
(10 Gy) and did not find any significant differences in the cell 
irregularity index between the control and treatment groups.12 
Other studies indicated that after treatment of glioblastoma cells, 
they became more round and spherical in shape8,13,26-28 which is 
not in line with the findings of the present study. One of the main 
causes of the observed discrepancy could be that the cells were 
bound to the dish surface in the mentioned studies. Therefore, 
the cells lost their correct morphology, and analysis of true 
shape changes during treatment was impossible. Under these 
conditions, the cells lose their adhesion to the dish surface after 
treatment, which changes their shape from extended to spherical; 
consequently, these changes in shape cannot be true indicators. 
Nevertheless, in the present study, for a reliable morphological 
analysis, the cells were first trypsinized and floated in the culture 
medium, and then, images were acquired.

Regarding the quantitative analysis, Abbasian Ardakani et al 
indicated that changes induced by radiation and hyperthermia 

Figure 3. Schematic Trend of Cell Changes During Different Treatment Regimens. 
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treatments can be extracted via computerized texture analysis 
with high accuracy. They introduced their quantitative features 
as indicators for detecting cell damage.29 The present study is 
the first attempt at evaluating the quantitative morphological 
changes of cells during treatment. Previous studies have 
manually assessed cell shape, which is operator-dependent and 
inaccurate in terms of the extracted information. In addition, 
visual inspection cannot detect fine and subtle changes, while 
computerized feature extraction and analysis can overcome this 
limitation. No studies were found in the literature, evaluating 
cell gradient changes during treatment both qualitatively and 
quantitatively. 

The present study showed that quantitative features could 
identify cell changes during different treatment regimens. 
However, further studies with larger feature variations and 
different cell lines are necessary to confirm our results. In 
addition, since all microscopic image analyses were compared 
with the control group and the reference for statistical analysis, 
other cell characteristics were not considered as complementary 
information. In this study, microscope focusing adjustment was 
performed manually, which could influence the image texture. 
To reduce the impact of focusing on image features, all imaging 
procedures were performed by one person. Hence, the variation 
of texture features were minimized. Furthermore, autoexposure 
was applied to homogenize all images in terms of brightness 
and texture. The main advantage of this method is that it can 
be performed in a short period of time, while other techniques 
are either time-consuming (e.g., colony assay) or expensive (e.g., 
flowcytometry). Also, quantitative feature analysis does not 
impose any additional costs.

Conclusions
In conclusion, the proposed method seems to be useful for in 
vitro evaluation of cells after treatment using two-dimensional 
microscopic images. The preliminary findings indicated that 
microscopic quantitative analysis of cell images can be used as 
a complementary technique for cytogenetic examinations to 
characterize the cellular damages after different treatments.
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