
Introduction
History suggests that humanity is always confronted by 
emerging viruses and viral infections in terms of livelihood 
and economic progress in a population. The current situation 
of the ongoing pandemic of the coronavirus disease 2019 
(COVID-19) verily supports this history. The disease came 
to recognition by the World Health Organization (WHO) 
as a pandemic on March 11, 2020 and has caused a global 
emergency across 210 countries and territories worldwide 
and two international conveyances.1 As of 9th of December 
2020 at 20.09 (GMT +6), a confirmed report of 19.5 million 
active infected cases with 0.5% criticality and over 1.5 
million deaths has been found (https://www.worldometers.
info/coronavirus/). Initially, the disease originated back in 

December 2019 in Wuhan City, Hubei province, China, in the 
form of a cluster of pneumonia-like symptoms that quickly 
transcended the border to spread across the globe within a 
short span of time.2

The causative agent behind the infection was first 
designated as 2019 novel coronavirus (2019-nCoV) by the 
WHO.3 The novel coronavirus was further renamed to 
severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) because of its genomic similarity of 79.5% and 96% 
at the nucleotide level, respectively, with SARS-CoV and bat 
coronavirus.4, 5 Through phylogenetic analysis, SARS-CoV-2 
has been categorized under the family Coronaviridae and 
order Nidoviralae and has shown an origin in the bat as a 
natural host.3,6 The SARS-CoV-2 is similar to the SARS-CoV 
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Abstract
Introduction: The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) has jeopardized our health system and leaving everyone in disarray.  Despite the diligent cumulative effort of academia, there is 
hardly any light in the end tunnel so far in developing efficient and sustainable treatment options to tackle this public health threat. Therefore, 
designing a suitable vaccine to overcome this hurdle calls for immediate attention. The current study aimed to design a multi-epitope based vaccine 
using immunoinformatics tools.
Materials and Methods: We approached the structural proteins: S, E, and M proteins of SARS-CoV-2 since they facilitate the infection of the 
virus into a host cell. By using different bioinformatics tools and servers, the multiple B-cell and T-cell epitopes were predicted potential for the 
required vaccine design. The phylogenetic analysis provides in-depth knowledge on ancestral molecular changes and the molecular evolutionary 
relationship of S, E, and M proteins.
Results: Based on the antigenicity and surface accessibility of the spike (S), envelope (E), and membrane (M) proteins, eight epitopes were selected 
by various B cell and T cell epitope prediction tools.  Molecular docking was executed to interpret the binding interactions of these epitopes from 
where three potential epitopes WTAGAAAYY, YVYSRVKNL, and GTITVEELK were finalized with their noticeable higher binding affinity scores 
-9.1,-7.4, and -7.0  kcal/mol, respectively. It is noteworthy to mention that the targeted epitopes are believed to cover 91.09% of the population 
coverage worldwide.
Conclusions: In sum, we identified the three most potential epitopes at length, which might be turned to our purpose of designing the peptide-based 
vaccine against SARS-CoV-2. 
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and MERS-CoV of the same genus Betacoronavirus within the 
same family regarding infectivity in humans. The latter two 
viruses caused endemic situations in recent years and were 
the reasons for thousands of deaths across the world.7-9 As for 
the structural similarity, the SARS-CoV-2 contains a positive 
single-stranded RNA as its genetic element having a genomic 
length of around 30 kilobases.10 The encoded proteins by this 
genome are structural and non-structural, and the major 
structural proteins are S glycoprotein, M protein,  E protein, 
and nucleocapsid (N) protein.11,12  The exposed parts of these 
proteins contain domains necessary for infection into the host 
cells and account for antigenicity.  The similarity between 
SARS-CoV and SARS-CoV-2 extends to the structure of spike 
glycoprotein, which may be exploited for a potential vaccine 
design because the S protein has two major subunits, namely 
S1 and S2, which assist during viral infection into the host 
cell. S1 subunit contains a receptor-binding domain (RBD) 
and N-terminal domain (NTD) where RBD binds to the 
receptor of the host cell known as angiotensin-converting 
enzyme-2 (ACE2).11,13 The E protein also has its role in 
establishing a series of involvement from pathogenesis to 
the viral assembly by not only interacting with the host cell 
protein but also maintaining a defining connection with all 
the other structural proteins (M, S, N proteins) of the virus.14 
Moreover, the exposed portion of the M protein outside the 
membrane provides us an opportunity to design a suitable 
epitope-based subunit vaccine. 

The scientific community is currently utilizing different 
therapeutic strategies to combat this dangerous spread of 
COVID-19, most of which are opted to develop novel drugs 
or vaccines. Chinese traditional drugs named ShuFengJieDu 
capsules and LianHua Qing Wen capsules had been applied 
to some of the preliminary cases before they were reported 
to be effective. However, no clinical trials to this date have 
ever proven them to be safe enough.15  Some other drugs, such 
as remdesivir and chloroquine, had also been reported to be 
effective against COVID-19 through in-vitro trials. However, 
no authentic clinical trial has justified such a claim so far.15,16 
Besides, SARS-CoV-2 is dispersing too fast across almost all 
the countries of the world and is mutating in an unbelievable 
manner. Due to the high mutation rate in the genome of the 
SARS-CoV-2 single epitope will not suffice to provide for a 
successful vaccine; instead, multiple epitope-based vaccines 
may do the trick here.17

At the current stage of the pandemic, it will be highly 
insensible to develop a vaccine through a classical approach 
in-vitro that involves the identification, isolation, and 
culture of pathogenic viruses. This particular process will 
actually be too expensive and time-consuming, which is not 
desirable at all the given circumstances. A very sustainable 
way to overcome such hurdles would be to design a peptide 
vaccine by genome and proteome analysis of the virus using 
computational methods. Since the genome and proteome 
sequencing of SARS-CoV-2 has already been done, it is only 
rational that we take control measures by making the best out 
of computation based analysis to design therapeutic targets. 
In this study, we explored the S, E, and M proteins of SARS-

CoV-2 by using different in silico tools and servers to predict 
B-Cell and T-Cell epitopes to eventually design an effective 
epitope-based vaccine. The predicted epitopes were analyzed 
further to check their antigenicity and surface accessibility. 
Epitope-allele interaction was investigated through molecular 
docking. A phylogenetic tree was constructed to identify 
the selected S, E, and M proteins’ molecular evolutionary 
relationships. The study was concluded with the introduction 
of a properly designed vaccine from the most suitable epitopes.

Materials and Methods 
Retrieval of Protein Sequences 
The FASTA format of S, E, and M protein sequences of SARS-
CoV-2 from various geographical areas: Australia, China, 
USA, Finland, India, Sweden, South Korea were retrieved 
from the National Center for Biotechnology Information 
(NCBI) (https://www.ncbi.nlm.nih.gov/). Then, the BLAST 
program from NCBI was used to derive similar sequences 
against the proteins. 
 
Phylogenetic Tree Construction and Analysis
The S, E, and M protein sequences of SARS-CoV-2, SARS-
CoV, MERS, and common human coronavirus strains (229E, 
NL63, OC43, and HKU1) were targeted for this phylogenetic 
study. All the sequences of the proteins retrieved from the 
NCBI BLASTP result were aligned separately through the 
ClustalW algorithm by utilizing the MEGA (version 10.0.5).18 
All the required parameters for the alignment analysis were 
used as the default program in the software. The aligned 
sequences were then visualized with the Jalview (version 
2.11.0)19 to observe consensus and conserved sequences. The 
phylogenetic trees were built using the neighbor-joining tree 
function and default analysis preferences in MEGA. 

Membrane Topology Analysis
Epitopes of a protein must be in the exposed regions to mount 
a sufficient immune response. The membrane topology of 
these proteins was analyzed using the TMHMM v2.0 server20 
and was later cross-referenced with the InterPro server.21,22 
The outer membrane regions of these proteins were selected 
for further analysis.

Antigenicity Prediction
A vaccine candidate must elicit a sufficient antigenic response 
as the antigenicity of epitopes plays a crucial role in provoking 
an adequate immune response. VaxiJen v2.0 server23 calculates 
antigenicity depending on physicochemical properties 
of proteins with the threshold value 0.4 (for viral protein 
sequence).

B Cell Epitope Identification  
B cell epitopes presented on the virus surface proteins are 
recognized by B lymphocytes to elicit an immune response. 
Based on an artificial neural network, the ABCpred v2.0 
server24-27 predicted the linear B cell epitopes. The epitopes 
were cross-referenced with the Immune Epitope Database 
(IEDB),28 which uses amino acid scales and hidden Markov 
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models (HMMs) as a prediction method. Moreover, Kolaskar 
and Tongaonkar antigenicity, Parker hydrophilicity prediction 
tools from IEDB were explored to determine these selected 
epitopes’ antigenicity and hydrophilicity properties. 

T Cell Epitope Identification 
T cell epitopes consist of a group of amino acids, presented 
by an antigen-presenting cell in the bound form with major 
histocompatibility (MHC) molecules to mount T cell-
mediated immune response. Prediction of T cell epitopes was 
performed using the NetCTL tool, which utilizes MHC binding 
affinity, proteasomal processing, and TAP transport.29-31 The 
tool predicts half-maximal inhibitory concentration (IC50) 
values of epitopes based on artificial neural network.32,33 
The lengths for epitopes were set at 9.0 and 15.0 for MHC I 
molecule and MHC II molecule, respectively. 

Molecular Docking Analysis of HLA and Epitopes
The three-dimensional structures of targeted T-cell epitopes 
were modeled by the PEP-FOLD3 server,34 a peptide structure 
predicting tool. The best 3D structure generated by this server 
was selected as a ligand for docking analysis. Molecular 
docking was performed by the virtual screening tool PyRx35 
through its Autodockvina36,37 program in order to analyze the 
interactions among our proposed epitopes and different HLA 
molecules. The protein data bank provided most of the PDB 
files of the selected HLA molecules for docking study, whereas 
Phyre2 protein prediction server (Protein Homology/analogy 
Recognition Engine v2.0)38 was used to generate the 3D 
models of other HLA molecules whose structures were not 
available in PDB. Discovery Studio (v4.5)39 prepared these 
HLA molecules as macromolecules by removing water, non-
polar hydrogen, and unnecessary molecules. The PPDB files 
were converted into PDBQT files, and the default grid box 
parameters were maintained with exhaustiveness value 8. 
The binding interactions of epitope- HLA molecules were 
visualized using UCSF Chimera 1.13rc.40

Population Coverage Prediction 
Determination of population coverage for individuals is 
essential as epitopes may exhibit variation in their binding 
sites during interaction with different HLA alleles. The 
IEDB population coverage calculation tool41 was utilized to 
determine the percentage of people expected to respond to a 
specific number of MHC-restricted epitopes worldwide.

Results 
Sequence Retrieval
Respective amino acid sequences of S glycoprotein, E protein, 
and the M protein of SARS-CoV-2 were retrieved from NCBI. 
A total of 13 sequences of S protein (Figure S1), 13 sequences 
of M protein (Figure S2), and 6 sequences of E protein (Figure 
S3) were selected for the analysis. The length of the S, M, and 
E proteins were 1273, 220, and 75 amino acids, respectively.

Phylogenetic Tree Construction and Analysis
Figure 1. Membrane Topology Analysis. Exposed region of spike 
protein analyzed by TMHMM v2.0 server.
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Primary sequences of S, E, and M protein were investigated
Prediction of B-Cell Epitope

0.5102, respectively.
values for the region of the E and M protein were 0.7282 and 
S  protein  region  had  an  antigenic  value  of  0.4646,  whereas 
used to predict antigenicity of all the respective proteins. The 
proteins were taken for our assessment. VaxiJen 2.0 server was 
(1-11, 35-75) and (1-19, 74-78) respectively for S, E, and M 
(Non-cytoplasmic  region)  ranging  from  1-1213  (Figure  1), 
outer portions of each protein. The length of exposed regions 
cell. Interpro and TMHMM servers were used to predict the 
of surface proteins, which bind with the receptor of the host 
Viral infection has initially been facilitated by the outer domain 
Prediction of Exposed Regions and Antigenicity

related strains of the human coronavirus OC43 and HKU1.
SARS-CoV-2, and MERS virus rather than the other closely 
related  and  also  comparatively  closer  to  the  SARS-CoV, 
whereas  human  coronavirus  229E  and  NL63  are  closely 
CoV  and  SARS-CoV-2  are  closely  related  to  MERS  virus 
showed  a  different  result  for  the  E  protein.  Actually,  SARS- 
relationship in regards of the S and M proteins, the analysis 
closely  related  229E  and  NL63  strains.  Unlike  the  ancestral 
CoV,  SARS-CoV-2  and  MERS  virus  rather  than  the  other 
closely  related  and  also  comparatively  closer  to  the  SARS- 
related to MERS virus whereas OC43 and HKU1 strains are 
S1-S3) showed that SARS-CoV and SARS-CoV-2 are closely 
coronaviruses strains (229E, NL63, OC43, and HKU1) (Table 
SARS-CoV,  SARS-CoV-2  along  with  common  human 
envelop  proteins  (Figure  S6)  from  diverse  strains  of  MERS, 
of different strains of MERS, SARS-CoV, SARS-CoV-2  and 
Phylogenetic analysis of the membrane proteins (Figure S5)
coronavirus NL63 and 229E are closely related to each other. 
to  the  SARS  and  SARS-CoV-2.  On  the  other  hand,  human 
closely  related  to  the  MERS  virus,  whereas  distantly  related 
showed that both human coronavirus OC43 and HKU1 are 
comprehensive  and  relatable  (Figure  S4).  The  analysis  also 
that  their  ancestral  and  evolutionary  relationship  has  been 
229E,  NL63,  OC43,  and  HKU1)  (Table  S1-S3),  we  noticed 
common human coronaviruses (Human coronavirus strains:
the different strains of MERS, SARS-CoV, SARS-CoV-2, and 
From  the  phylogenetic  analysis  of  spike  glycoprotein  from 
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through ABCpred and IEDB server to predict B-cell epitopes. 
A total of 59, 5, and 19 B-cell epitopes for S, E, and M proteins 
were predicted individually by ABCpred. From all anticipated 
epitopes, only four epitopes, S (2 epitopes), E (1 epitope), 
and M (1 epitope) presented on the outside of S, E, and M 
proteins, were chosen (Table 1) with higher antigenicity 
scores. The Kolaskar and Tongaonkar antigenicity estimation 
tool (Figure 2) was exploited to predict the antigenicity score 
(Table 1), and the surface accessibility was determined by the 
TMHMM server.

Based on ABCpred, among these four identified 
epitopes of S protein, ‘HRSYLTPGDSSSGWTA’ and 
‘CFTNVYADSFVIRGDE’ showed the most elevated 
antigenic score of 0.92 and 0.85, respectively. Moreover, 
epitope ‘HRSYLTPGDSSSGWTA’ is positioned within the 
NTD region, whereas ‘CFTNVYADSFVIRGDE’ is inside the 
RBD region. The E protein epitope ‘NVSLVKPSFYVYSRVK’ 
showed a 0.8 antigenic score. This epitope is situated at 48 
position of E protein while at 7 position of M protein, the 
‘TITVEELKKLLE’ revealed 0.75 antigenic score and was 
selected for M protein (Table 1). According to IEDB, the 
‘TITVEELKKLLE’ indicated the most noteworthy antigenicity 
of 1.113, followed by the ‘CFTNVYADSFVIRGDE,’ 
‘TITVEELKKLLE’ and ‘HRSYLTPGDSSSGWTA’ with the 
antigenicity of 1.048, 1.043, and 0.993, respectively. The 
ABCpred score and VaxiJen antigenicity results revealed 
the ability of all predicted peptides to expand barrier 
reactions within the host during SARS-CoV-2 infection as 
an extracellular part of the transmembrane protein. The 
Parker-hydrophilicity strategy was performed to discover the 
hydrophilicity of anticipated B-cell epitopes (Figure 3). With 
the hydrophilicity analysis, the ‘HRSYLTPGDSSSGWTA’ was 
found to have remarkable hydrophilicity with the value of 2.95, 
whereas the hydrophilicity values of ‘CFTNVYADSFVIRGDE,’ 
‘TITVEELKKLLE,’ and ‘NVSLVKPSFYVYSRVK’ were 1.513, 
0.492, and 0.45, respectively (Table 1). 

Prediction of T-Cell Epitope
Here, the IEDB server was utilized to evaluate the best T-cell 
epitopes from the chosen protein sequences of S, E, and M 
proteins. Moreover, antigenicity testing and screening of 
peptides were done with the help of the VaxiJen 2.0 server. In 
light of the high combinatorial score, the four best epitopes 
for MHC Class-I (Table 2) were chosen for additional 
investigation. For MHC class I assessment, NetMHCcons 1.1 
Server is a consensus approach that combines the three best 
NetMHC, NetMHCpan, and PickPocket class strategies to 
provide the most accurate predictions. The MHC-I alleles for 

which the epitopes demonstrated higher affinity (IC50, 500 
nM) were chosen (Table 2).

Between MHC class-I anticipated epitopes, a 9-mer epitope, 
‘KIADYNYKL’ which is inside the RBD region of SARS-
CoV-2 showed a higher antigenicity score of 1.6639 followed 
by the ‘GTITVEELK,’ ‘YVYSRVKNL’ and ‘WTAGAAAYY’ 
(within the NTD region of SARS-CoV-2) with an antigenicity 
score of 1.0976, 0.7020, and 0.5371, respectively. Based on 
the high combinatorial score for MHC Class-II, the four 
best epitopes (Table S4) were chosen for further analysis. 
The NetMHCII 2.3 server was used to anticipate MHC-II 
binding prediction with HLA-DR, HLA-DQ, and HLA-

Table 1. Predicted B-Cell Linear Epitopes With ABCpred Score, Antigenicity and Hydrophilicity Score

Protein Epitope Position ABCpred Score
Antigenicity

(IEDB)
Hydrophilicity

(IEDB)

S
HRSYLTPGDSSSGWTA 245-260 0.92 0.993 2.95

CFTNVYADSFVIRGDE 391-406 0.85 1.048 1.513

E NVSLVKPSFYVYSRVK 48-63 0.8 1.113 0.45

M TITVEELKKLLE 7-18 0.75 1.043 0.492

Figure 2. Antigenicity Prediction of the Epitope. Antigenicity 
determination of proposed epitope of S protein was performed by 
Kolaskar and Tongaonkar antigenicity prediction tool [Threshold 
value=1.00]. Yellow color indicates the antigenic nature of the 
residues.

Figure 3. Hydrophilicity Prediction of the Epitope. Here, hydrophilicity 
of the anticipated B-cell epitope of S protein was predicted by Parker-
hydrophilicity prediction tool with the threshold value 1.00 where 
hydrophilic nature of the residues was indicated by the yellow regions.
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DP MHC class II alleles. The MHC-II alleles for which the 
epitopes demonstrated higher affinity (IC50, 500nM) were 
selected (Table S4). The peptide ‘GVLTESNKKFLPFQQ’ 
which is within the RBD region of SARS-CoV-2 was viewed 
as increasingly antigenic for its higher antigenicity score of 
0.8200, followed by the ‘YFKIYSKHTPINLVR’ (inside the 
NTD area of SARS-CoV-2), ‘FYVYSRVKNLNSSRV’, and 
‘MADSNGTITVEELKK’ with an antigenicity score of 0.8197, 
0.6103 and 0.4367, respectively.

Molecular Docking Analysis
Among these eight selected T cell epitopes, ‘WTAGAAAYY’ 
bound in the binding pocket of HLA-B*35:01 allele (PDB 
ID: 4PRN) showed the highest binding score of -9.1 kcal/
mol (Figure 4). H-bond receptor surface of “WTAGAAAYY,” 
indicating non-bond interactions is shown in the Figure 5. 
Eight T-cell epitope sequences with their individual docking 
score are shown in Table 3.

On the other hand, ‘YVYSRVKNL’ bounded with 
HLA-A02:03 (PDB ID: 3OX8) and ‘GTITVEELK’ bounded 
with HLA-A*11:01 (PDB ID: 6JOZ) with the binding affinity 

of -7.4 and -7 kcal/mol, respectively which exhibited the good 
binding interaction of these epitopes with HLA molecules. 
Nine hydrogen bonds formed between ‘WTAGAAAYY’ 
and HLA-B*35:01 allele where TRP1 formed one bond with 
SER116 and another bond with TRP147, THR2 formed one 
bond with ASN80 and double bonds with LYS146, ALA7 
formed a single bond with TYR9, TYR8 formed another 
with ASN63 and TYR9 formed double bonds with THR69. 
Hydrogen bonds with their distance are shown in Figure 6.

Population Coverage Analysis 
On the basis of the binding interaction of our targeted 
epitopes with their respective HLA alleles, we finalized three 
epitopes for vaccine design having the highest binding affinity. 
Population coverage for these three epitopes demonstrated 
the consequences of the host genetic variation on the binding 
specificity of these targeted epitopes to class I HLA alleles. 
Their cumulative population coverage around the world was 
91.09%, which revealed that these epitopes could cover about 
91% (Figure 7) of the population from different regions of the 
world.

Table 2. Predicted Epitopes for CD8+ T-Cell Along With Their Interacting MHC Class I Alleles With Affinity <500 nM

Protein Epitope Position
Antigenicity

(Vaxigenv2.0)
MHC Class I Allele With Total Score Having IC50 Values < 500 nM

S

WTAGAAAYY 258-266
Probable antigen 

(0.5371)

HLA-A*01:01(25.27), HLA-A*01:07(34.48, HLA-A*01:02(34.85), 
HLA-A*01:21(44.76), HLA-A*01:21(112.68), HLA-A*25:02(144.23), 
HLA-A*25:04(168.61), HLA-A*26:02(4.31), HLA-A*26:04(13.51), 
HLA-A*26:01(14.63), HLA-A*26:03(176.4), HLA-A*29:02(6.57), 
HLA-A*29:04(8,82), HLA-A*30:02(17.68), HLA-A*30:03(22.83), 
HLA-A*34:06(33.88), HLA-A*68:05(67.26), HLA-B*15:17(5.59), 
HLA-B*15:15(78.15), HLA-B*15:08(79.29), HLA-B*35:10(13.94), 
HLA-B*35:07(22.65), HLA-B*35:07(23.62), HLA-C*02:03(234.76), 
HLA-C*02:05(317.47), HLA-C*03:01(37.99), HLA-C*03:02(37.99), 
HLA-C*05:04(81.16), HLA-C*12:04(280), HLA-C*12:05(283.13).

KIADYNYKL 417-425
Probable antigen 

(1.6639)

HLA-A*02:02(5.74), HLA-A*02:05(10.51), HLA-A*02:01(11.35), 
HLA-A*02:01(228.25), HLA-A*30:06(228.25), HLA-A*32:05(30), 
HLA-A*32:06(63.32), HLA-A*32:02(69), HLA-B*39:02(319.38), 
HLA-C*02:03(50), HLA-C*05:04(411.22), HLA-C*15:02(312.72), 
HLA-C*15:06(315.22).

E YVYSRVKNL 57-65
Probable 

antigen(0.7020)

HLA-A*02:01(348.45), HLA-A*02:02(264.44), HLA-A*02:03(27.56), 
HLA-A*02:06(314.41), HLA-A*02:11(44.60), HLA-A*02:13(349.43), 
HLA-A*02:14(408.68), HLA-A*02:21(240.69), HLA-A*26:02(359.95), 
HLA-A*26:03(484.69), HLA-A*32:07(497.98), HLA-A*34:01(377.61), 
HLA-A*68:23(80.87), HLA-B*07:34(250.99), HLA-B*07:54(497.90), 
HLA-B*08:01(116.20), HLA-B*08:04(308.30), HLA-B*08:05(82.40), 
HLA-B*08:07(205.49), HLA-B*08:10(38.25), HLA-B*08:11(103.48), 
HLA-B*08:13(39.61), HLA-B*15:17(104.28), HLA-B*15:29(454.66), 
HLA-B*39:17(420.38), HLA-B*42:07(239.11), HLA-C*01:12(403.25), 
HLA-C*01:21(84.79), HLA-C*02:05(253.04), HLA-C*02:12(416.56), 
HLA-C*02:16(405.44), HLA-C*03:01(21.02), HLA-C*03:02(21.02), 
HLA-C*06:02(187.05), HLA-C*06:03(147.22), HLA-C*06:05(294.93), 
HLA-C*07:01(205.07), HLA-C*07:03(145.68), HLA-C*08:09(234.76), 
HLA-C*08:11(234.76), HLA-C*12:02(56.67), HLA-C*12:03(12.24), 
HLA-C*12:06(12.98), HLA-C*14:02(45.82), HLA-C*14:03(92.38), 
HLA-C*15:02(177.20), HLA-C*15:04(88.76), HLA-C*16:04(38.33), 
HLA-C*16:01(85.37).

M GTITVEELK 6-14
Probable 

antigen(1.0976)

HLA-A*11:01(32.06), HLA-A*68:01(35.92), HLA-A*03:12(223.83), 
HLA-A*11:64(34.92), HLA-A*11:60(36.36), HLA-A*03:72(302), 
HLA-A*03:50(335.69), HLA-A*30:26(184.37), HLA-A*31:03(319.02), 
HLA-A*31:06(317.70), HLA-A*68:04(289.14), HLA-A*68:10(17.15).
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Discussion
One of the most prolific ways to reduce numerous viral 
diseases is to design novel vaccines.42-45 In terms of SARS-
CoV-2, ongoing research projects are being held to figure out 
the biological characteristics, genomics and proteomics, and 
pathophysiology of the virus worldwide.46 Immunoinformatics 
tools have always been a medium to develop multi-epitope 
based vaccines for some of the dangerous viral diseases 
such as rhinovirus,47 dengue virus,48 chikungunya virus,49 

etc. Consistent with that idea, this study aimed at providing 
a peptide-based vaccine design against SARS-CoV-2 using 
different bioinformatic tools by exploring structural proteins 
of the virus, namely S glycoprotein, M protein, and E protein50, 

51 responsible for virulence mechanism and pathogenic 
pathways. 

The multiple sequence alignment along with phylogenetic 
analysis of these structural (S, E, and M) protein sequences 
from diverse strains of MERS, SARS-CoV, SARS-CoV-2, and 
common human coronavirus (Human coronavirus strains: 
229E, NL63, OC43, and HKU1) represented the ancestral 
molecular changes, evolutionary history, and the molecular 
evolutionary relationship. Among them, a phylogenetic tree 
of spike proteins highlighted a close relationship of OC43 
and HKU1 with MERS, along with their distant relationship 
with SARS and SARS-CoV-2. While considering membrane 
proteins, OC43 and HKU1 were comparatively stronger in 
relation with SARS-CoV, SARS-CoV-2,  and MERS rather 
than with 229E and NL63. A diversified result was also 
observed in the case of enveloping proteins where closely 
related strains 229E and NL63 were relatively closer to the 
SARS-CoV, SARS-CoV-2, and MERS rather than OC43 and 
HKU1.

Exposed portions of S, E, and M proteins of SARS-
CoV-2 typically offer an extensive scope to induce antibody 
production against themselves.52,53 Therefore, it is necessary 
to design a therapeutic target based on those exposed 
portions of the virus. Exploration of the exposed regions of 
our targeted proteins revealed that the S protein had a larger 
exposed region and was likely to be the best candidate for 
vaccine development rather than E and M proteins. Besides, 
a vaccine candidate must have antigenic features to maximize 
its reliability to be an agent of an immune response. To ensure 
the efficacy of the vaccine, the antigenicity of the targeted 
protein sequences must be evaluated as it is crucial for the 
design of a peptide-based vaccine.54 The antigenicity analysis 
of S, E, and M proteins revealed the greater possibilities of 
these proteins to mount an immune response as a vaccine 
candidate.

Additionally, potential B cell epitopes play a significant role 
by providing protection against viral diseases.55 Therefore, 
distinctive analysis techniques were utilized in this study 
for the prediction of a linear B cell epitope. Four potential 
linear B cell epitopes were selected with the best antigenicity 

Figure 4. Molecular Docking Complex Analysis. Epitope 
"WTAGAAAYY" binds in the docking pocket of HLA-B*35:01 
molecule. (PDB ID: 4PRN) with the binding affinity = -9.1 kcal/mol.

Figure 5. Non-bond Interactions Analysis. H-bond receptor surface of 
"WTAGAAAYY" representing non-bond interactions.

Table 3. Binding Affinity of T-Cell Epitopes and HLA Molecules

Protein Name Epitope seq. Allele Docking Score (kcal/mol)

M Protein
GTITVEELK (MHC I ) HLA-A*11:01 (32.06) -7

MADSNGTITVEELKK (MHC II) HLA-DQA1*01:02/DQB1*06:02 (215.20) -5.5

E Protein
YVYSRVKNL (MHC I ) HLA-A02:03(27.56) -7.4

FYVYSRVKNLNSSRV (MHC II) HLA-DRB1*04:01(12.50) -6.2

S Protein

WTAGAAAYY (MHC I ) HLA-B*35:01(23.62) -9.1

KIADYNNKL (MHC I) HLA-A*02:01(11.35) -6.1

YFKIYSKHTPINLVR (MHC II) HLA-DRB1*04:01(185.8) -6.4

GVLTESNKKFLPFQQ (MHC II) HLA-DRB1*03:01(188.1) -4.6
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and hydrophilicity scores. The ‘HRSYLTPGDSSSGWTA’ 
situated in the NTD region exhibited the highest antigenic 
score of 0.92, and ‘CFTNVYADSFVIRGDE’ within the RBD 
region showed the second-highest antigenic score of 0.85, 
whereas NVSLVKPSFYVYSRVK and TITVEELKKLLE also 
showed antigenic properties. Their potentiality as vaccine 
candidates was also confirmed by calculating antigenicity and 
hydrophilicity through Kolaskar and Tongaonkar antigenicity 
and Parker-hydrophilicity analysis. The results of antigenicity 
and hydrophilicity suggest that all of these four selected linear 
B cell epitopes might have the potentiality to enhance humoral 
immunity as well as subsequent antibody neutralization. 

B-cell epitope-based vaccines have been quite popular for 
a long time; however, vaccines based on T-cell epitopes are 
currently in the trend as the CD8+ T cells produce a long-term 
memory response in the host against the infected cell.56 That 

is why the prediction of T-cell epitopes is an unquestionable 
requirement for a vaccine to have a preventive capacity. We 
predicted the best eight potential T cell epitopes from S, E, 
and M proteins. Among MHC class-I anticipated epitopes, 
higher antigenicity was observed for ‘KIADYNYKL’ situated 
in the RDB region, which was more responsible for binding 
with the host cell receptor than the other three epitopes within  
NTD region. The results concluded that along with the three 
other epitopes, ‘KIADYNYKL’ might significantly stimulate 
cellular immunity as they were represented to the cytotoxic 
T cells by the class-I MHC molecules. For MHC-II alleles, 
‘GVLTESNKKFLPFQQ’ within the RBD region displayed 
higher antigenicity scores than the other three epitopes and 
displayed the helper T lymphocytes by MHC-II molecules, 
which might stimulate cellular and humoral immunity.

Moreover, molecular docking was performed to analyze the 
binding affinity of our targeted eight epitopes with different 
HLA molecules. Noticeable binding affinity score -9.1 kcal/
mol was observed for the epitope ‘WTAGAAAYY,’ which was 
bound in the binding pocket of HLA-B*35:01 allele. Nine 
hydrogen bonds were formed between ‘WTAGAAAYY’ and 
HLA-B*35:01, which were observed in the docking complex. 
We also finalized epitopes’ YVYSRVKNL’, ‘GTITVEELK’ 
along with ‘WTAGAAAYY’ as ideal epitope-based vaccine 
candidates because of their notable docking scores.

Another essential prerequisite in epitope-based vaccine 
design is to determine population coverage as MHC 
polymorphism leads to the expression of different forms 
of HLA  at considerably different rates among different 
ethnicities.57,58 The three selected epitopes covered about 
91.09% of population worldwide, signifying that these 
potential epitopes may be an effective universal vaccine in the 
future.

Most of the recent studies emphasized only the virus’s spike 
protein, given its wide range of conservancy across the viral 
population. Nevertheless, our work was dedicated to specific 
epitopes and domains of all the mentioned proteins (S, M, and 
E proteins) for an in-silico design of a multi-epitope vaccine. 
Vaccine development against SARS-CoV-2 shed light on 
only the T-cell epitopes in some recent studies, whereas in 
this study, both eligible B and T cell epitopes of SARS-CoV-2 
were explored for a maximized yield in this vaccine design 
approach.59 All the ideal criteria of a potential epitope had 
been pulled off by the selected epitopes of S, M, and E proteins.

Conclusions
Different vaccine development strategies against SARS CoV2 
are being opted along with ongoing trials on novel drug 
designs. In the current study, we suggested three epitopes from 
conserved regions of spike, membrane, and envelope proteins 
of SARS-CoV-2 as they possessed the abilities to produce an 
antigenic response. Their potentialities as vaccine candidates 
were assured by their antigenic properties and strong binding 
affinity for MHC molecules. This in-silico study requires 
experimental validation to get a cost-effective epitope-based 
peptide vaccine with higher efficacy against SARS-CoV-2.

Figure 6. Analysis of Hydrogen Bond Formation Between Ligand 
(WTAGAAAYY) and Ligand Binding Site Atoms of the Receptor 
(HLA-B*35:01). In the docking complex, nine hydrogen bonds were 
formed between WTAGAAAYY' and HLA-B*35:01 allele. Among 
them, TRP1 formed one bond with SER116 (distance 2.02 Å) and 
another bond with TRP147 (distance 2.42 Å), THR2 formed one bond 
(distance 2.04Å) with ASN80 and double bonds (distance 2.39Å, 
2.36Å) with LYS146, ALA7 formed single bond (distance 1.84 Å) with 
TYR9, TYR8 formed one bond (distance 2.07 Å) with ASN63, TYR9 
formed double bonds (distance 1.78 Å,1.94 Å) with THR69.

Figure 7. Population Coverage Analysis. Prediction of the population 
coverage for three potential vaccine candidates with MHC Class I 
HLA alleles around the world.
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