
Introduction
In recent years, the spot blotch (SB) disease caused by the 
fungus Cochliobolus sativus (Ito & Kuribayashi) Drechs. Ex 
Dastur (anamorphic: Bipolaris sorokiniana (Sacc.) Shoemaker) 
has emerged as a serious concern for barley grown in warmer 
and humid regions of the world.1,2 The use of resistant 
cultivars is the most practical method of managing SB. 
However, host resistance is not permanent because cultivar-
specific physiological races of C. sativus are known to exist 
and, over the years, have developed on cultivars once thought 
to be highly SB resistant.3 Therefore, in the absence of varietal 
resistance, the most effective SB management practice is to 
make multiple preventive fungicide applications throughout 
the growing season.2

Fungicides from different chemical groups are approved for 
use on barley worldwide. The triazole group (e.g. triadimefon; 
TDM) has been proved to be very effective against SB disease.4,5 

However, it has been reported that C. sativus poses a high risk 
to develop resistance against fungicides like TDM, because 
of its high genetic variability,6,7 short life cycle3 and abundant 
inoculum production.8 Therefore, understanding C. sativus 
resistance mechanisms to this common fungicide, can help 
to establish strategies for sustainable fungicide management 

in the field.
 Triazole fungicides belonging to the sterol demethylation 

inhibitor group, are characterized by the inhibition of 
ergosterol biosynthesis, a fundamental component of the 
fungal cell plasma membrane.9 The target of these fungicides 
is lanosterol 14-α demethylase (Erg11 protein), a cytochrome 
P450 enzyme that is involved in the conversion of lanosterol 
to 4, 4-dimethylcholesta-8(9), 14, 24-trien-3β-ol. The azole 
agents are linked to this enzyme using the aromatic five-
membered heterocycle and thereby inhibit the cytochrome 
P450 catalytic activity.10

Fungal pathogens can rapidly develop molecular 
mechanisms of resistance to triazoles as a result of selective 
pressure by the continued use of regular or sub-regular 
dosages of fungicide.5,11 Many molecular studies have reported 
that the mitochondrial gene for cytochrome b (cytb) can 
play a significant role in resistance to fungicides. Sierotzki 
et al,12 Kuck and Gisi,13 and Gisi et al,14 reported that cytb 
can function in the resistance to quinone outside inhibitor 
(QoI) fungicides by inhibiting the mitochondrial respiration. 
Quantitative real-time polymerase chain reaction (qRT-
PCR) has been used as a valuable and effective method for 
measuring changes in mitochondrial gene expressions due to 
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its high sensitivity.15,16

Knowledge of the evolution of fungicide resistance in C. 
sativus population is vital in Syria to evaluate and improve 
the processing SB disease management program, and for 
developing management strategies for fungicide resistance. 
Therefore, the present work aimed to evaluate for the first 
time the changes in cytb gene in two major Syrian C. sativus 
virulent (Pt4) and avirulent (Pt1) pathotypes at early time 
series of TDM treatment using qRT-PCR.

Materials and Methods
Fungal Isolates
Monoconidial isolates of the virulent (Pt4) and avirulent (Pt1) 
C. sativus pathotypes from Syria17 were used in this study. The 
fungus was grown separately in 9 cm Petri dishes containing 
potato dextrose agar (PDA, DIFCO, Detroit, MI. USA) with 
13 mg/L kanamycin sulphate added after autoclaving and 
incubated for 10 days, at 22 ±1ºC in the dark to allow mycelial 
growth and sporulation. The cultures were maintained on 
silica gel at 4ºC until needed.

Fungicide
The commercially available fungicide TDM 
[1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl) 
butan-2-one] (25% w/v Bayleton, Bayer, India Ltd, Mumbai) 
was used in this study. It is a member of triazoles that is 
1-hydroxy-3, 3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one in 
which the hydroxyl hydrogen is replaced by a 4-chlorophenyl 
group. 

Fungicide Sensitivity
Cochliobolus sativus sensitivity to TDM was determined by 
measuring the radial growth of each pathotype on PDA plates 
using the method described by Nene and Thapliyal.18 To do 
so, TDM was added to PDA medium after sterilization to 
give final concentrations of 0.125, 0.25, 0.312 and 0.625 µg/
mL TDM. A 10 mm mycelial plug was taken from the edge 
of a 5-day-old colony and was placed on the center of PDA 
plates amended with each concentration of the fungicide. The 
PDA medium without fungicide was served as a control. Five 
replications were maintained for each treatment/pathotype in 
a complete randomized design. Plates were incubated at 18-
20ºC for 3 days in the dark and, subsequently, the diameter 
of the colonies was measured. Relative growth rate (RGR) 
was calculated by dividing the growth rate of an isolate in the 
presence of TDM with that observed in the fungicide absence. 
The EC50 values were calculated as described by Secor and 
Rivera.19 Fungal radial growth was measured on each plate 
in the TDM dilution series, and compared with growth on 
non-amended PDA medium to calculate an EC50. The 
experimental data were analyzed by STAT-ITCF statistical 
programme (2nd version). Differences between means were 
evaluated for significance by using Newman-Keuls test at 5% 
probability level.20

RNA Isolation and cDNA Synthesis
RNA was isolated from mycelia of each isolate at 24, 48, 72 and 
96 hours post fungicide treatments using Nucleotrap mRNA 

mini kit (Macherey-Nagel, MN, Germany) following the 
manufacturer’s protocol. At the same time, mycelia from non-
treated Petri dishes were served as a control. The first-strand 
complementary DNA (cDNA) was then synthesized from 5 
μg of total RNA using the QuantiTect Reverse Transcription 
Kit (Qiagen) following the manufacturer’s instructions. Also, 
cDNA was stored at −20°C.

Quantitative Real-Time PCR 
Cytb expression was verified by qPCR according to the 
protocol described by Vielba-Fernández et al.21 The sequence 
information for all RT-PCR primers is given in Table 1. Cytb 
expression was assayed in StepOnePlusTM, 96 well using SYBR 
Green Master kit (Roche). All cDNA samples, standards and 
controls (no genomic DNA) were assayed for the target gene 
in triplicate in a single run. The threshold cycle (Ct) value was 
automatically determined for each reaction by the real time 
PCR system with default parameters. For accurate estimation 
of PCR efficiency, the standard curve was performed with a 
StepOnePlusTM software (v2.3). In our triplicate experimental 
conditions, a standard curve slope of –3.32 indicated a PCR 
reaction with 100% efficiency whereas, slopes more negative 
than –3.32 (ex. –3.9) indicate reactions that are less than 100% 
efficient. 

Data Analysis 
Raw data of fluorescence levels and the specificity of the 
amplicons were checked by qRT-PCR dissociation curve 
analysis using StepOne™ software (v. 2.3). The fluorescence 
readings of three replicated samples were averaged, and blank 
value (from no-DNA control) was subtracted. The final Ct 
values were the mean of three replicates and the coefficient 
of variance was calculated to evaluate the variation of Ct 
values for each gene. Each qRT-PCR reaction set included 
water as a negative no-template control instead of cDNA. 
The fold change in putative target gene expression levels 
was determined using the Ct method,22 with EF1α as a 
reference (housekeeping control) gene. Standard deviation 
was calculated from the replicated experimental data. The 
statistical analysis was conducted through the Tukey’s test at 
the 0.05 level.

Results and Discussion
In this study, the resistance of virulent and avirulent C. sativus 
pathotypes to four concentrations of TDM was investigated 
using RGR and cytb gene expression. Data showed that the 
ratio of RGR was decreased for both pathotypes by increasing 
TDM concentration, and the maximum mycelial growth 

Table 1. Properties and Nucleotide Sequences of Primers Used in This Study

Gene Gene Description Sequence
Amplified 

Fragment (bp)

EF1α
Elongation factor-1 
Alpha

GGCTGATTGTGCTGTGCTTA
153

TGGTGGCATCCATCTTGTTA

Cytb Protein coding
AGCAATGCATTACAACCCTAGC

223
CTATTCATGGTATAGCGCTC

http://www.biotechrep.ir


Arabi et al

J Appl Biotechnol Rep, Volume 7, Issue 4, 2020                                         http://www.biotechrep.ir200

inhibition by 50% (EC50) was recorded 48 hours at 0.25 µg/
mL TDM treatment (Table 2). Results demonstrated that C. 
sativus could grow under low TDM fungicide doses (0.0625 
and 0.0321 µg/mL). This observation suggests that low doses 
of TDM may actually promote the growth of C. sativus which 
might be taken into account when field applications are 
contemplated.

To better understand TDM resistance, changes in cytb gene 
expression of C. sativus were monitored at early time series 
following TDM treatment using qRT-PCR. Data showed that 
Cytb gene exhibited a differential expression by P =  0.05, and 
was inversely regulated during different time points post of 
fungicide treatment. However, at 48 hours, cytb gene was 
significantly expressed by8 fold increases in the virulent 
pathotype Pt4, as compared with controls (Figure 1). These 
results suggest that C. sativus is having a kind of resistance 
during TDM fungicide application, which could be one of 
the main causes for the observed low efficacy of triazole. 
These results are in agreement with those of Somani et al5 

who reported that a strong selection pressure during several 
years and frequent applications of triazoles for SB control 
lead to emergence of resistant C. sativus populations.5 Similar 
scenario of intensive triazole usage leading to the emergence 
of resistance and reduced fungicide efficacy has been reported 
in Europe, South America, and Asia for many plant pathogens 
associated with cereal crops such as Erysiphe graminis on 
barley and wheat23 and Mycosphaerella graminicola24 and 
Parastagonospora nodorum on wheat.25

However, although multiple mechanisms may confer fungal 

resistance against fungicides, they were most frequently 
triggered by point mutations in the fungicides’ target sites 
such as cytb gene, which encodes the enzymatic targets of 
demethylation inhibitors and QoIs.26 The mode of action of 
QoIs is based on blocking mitochondrial respiration and thus 
energy production in the cells, by binding to the cytochrome 
bc1 enzyme complex (complex III) at the Qo site which is 
partially encoded by the mitochondrial cytb gene.26,27

Therefore, the changes in Cytb gene of C. sativus found in 
this study is perhaps due to natural mutations occurred in 
mtDNA which is believed to exhibit higher mutation rates 
compared to nuclear DNA, mainly as a result of less efficient 

Table 2. Mean Colony Diameter (Mm) of Fungicide Treatment TDM and Non-
treatment of Cochliobolus sativus Pt1 and Pt4 Isolates

Time Isolates Con. Treatment With TDM

0.25 0.125 0.0625 0.0312

24 hours Pt1 F1.30a A0.30c C0.74b D0.85b F0.90a

Pt4 F1.45a A0.30c C0.80b D0.85b F1.10b

48 hours Pt1 E2.50a A0.40d C0.90c D1.20b E1.50b

Pt4 D3.44a A0.50c B1.50b C1.80b E1.90b

72h Pt1 C11.50a A0.50d B1.20c C1.50c D2.55b

Pt4 C12.00a A0.70d B1.50c C1.90c C3.30b

96h Pt1 B36.20a A0.50e B1.70d B2.90c B6.80b

Pt4 A40.10a A0.50e A2.30d A3.90c A11.2b

Means proceeded by different capital letters (raw) and followed by the different 
lowercase letter (column) and significantly different at (P < 0.05) according to the 
Newman-Keuls test.

Figure 1. Relative Expression Profiles of cytb Gene in the Virulent Cochliobolus sativus Pathotype (Pt4) and in a Virulent Pathotype (Pt1) During 
the Time Course Following Triadimefon Treatments. Error bars are representative of the standard error (Mean ± SD, n = 3). Data are normalized to 
Elongation factor 1α (EF-1α) gene expression level (to the calibrator, Control 0 h, taken as 1.00). 
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Figure 1. Relative expression profiles of cytb gene in the virulent C. sativus pathotype (Pt4) and in a virulent 
pathotype (Pt1) during the time course following triadimefon treatments. Error bars are representative of the 
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DNA repair mechanisms and a more mutagenic intracellular 
environment that is created by the production of free radicals 
during mitochondrial respiration, such as reactive oxygen 
intermediates.28,29 However, for deciphering whether these 
changes in the C. sativus cytb gene have been caused by 
natural mutations further work is required.

In this context, the efficacy of triazole fungicides can be 
affected due to cross-resistance or when an isolate develops 
resistance to all fungicides in a chemical group.30 Different 
works have also suggested that cross- and multidrug-
resistance may be driving forces in the development of 
resistance in fungi that are at the interfaces of agroecosystem, 
domestic, and hospital environments.31,32 However, due to the 
polygenic nature of C. sativus resistance attributed to TDM 
fungicides, the resistance to this kind of fungicides found 
against the common pathotype Pt4 within Syrian barley fields 
may be a result of slow and gradual selective pressure exerted 
on the pathogen populations due to a long-term use of TDM 
fungicides at high dosages, as well as due to the potential of 
migration of the resistance trait through sexual or asexual 
reproduction.5 Moreover, it has been shown for certain 
phytopathogens that resistance mechanisms may develop 
locally and subsequently spread across countries.23

Conclusions
The results of the present study revealed that cytb expression 
gene increased in both virulent and avirulent pathotypes at 
early time points following TDM application in comparison 
with non-treated ones, which is of value to give us an indicator 
about its role in signaling events during exposure to triazole 
fungicide.

In addition, C. sativus had an ability to grow under low 
TDM fungicide doses, this observation should be taken into 
account when field applications are contemplated. To avoid 
this resistance over the next few years, the adoption of anti-
resistance management strategy is urgently needed. 

However, to decrease the selective pressure towards resistant 
C. sativus populations, rotations of fungicides with different 
modes of action should be applied33 along with adoption 
of mixtures of single-target-site, high-risk fungicides with 
multiple-target-site and low-risk fungicides.29
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